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Abstract

The role of interspecific hybridization has recently seen increasing attention, especially in1

the context of diversification dynamics. Genomic research has now made it abundantly2

clear that both hybridization and introgression – the exchange of genetic material through3

hybridization and backcrossing – are far more common than previously thought. Besides4

cases of ongoing or recent genetic exchange between taxa, an increasing number of studies5

report “ancient introgression” – referring to results of hybridization that took place in the6

distant past. However, it is not clear whether commonly used methods for the detection of7

introgression are applicable to such old systems, given that most of these methods were8

originally developed for analyses at the level of populations and recently diverged species,9

a↵ected by recent or ongoing genetic exchange. In particular, the assumption of constant10

evolutionary rates, which is implicit in many commonly used approaches, is more likely to11

be violated as evolutionary divergence increases. To test the limitations of introgression12

detection methods when being applied to old systems, we simulated thousands of genomic13

datasets under a wide range of settings, with varying degrees of among-species rate14
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2 KOPPETSCH, MALINSKY, AND MATSCHINER

variation and introgression. Using these simulated datasets, we showed that some15

commonly applied statistical methods, including the D-statistic and certain tests based on16

sets of local phylogenetic trees, can produce false-positive signals of introgression between17

divergent taxa that have di↵erent rates of evolution. These misleading signals are caused18

by the presence of homoplasies occurring at di↵erent rates in di↵erent lineages. To19

distinguish between the patterns caused by rate variation and genuine introgression, we20

developed a new test that is based on the expected clustering of introgressed sites along21

the genome, and implemented this test in the program Dsuite.22

Key words : hybridization; introgression; rate variation; D-statistic; tree topology variation;23

branch lengths; phylogenetic network; phylogenomics.24

Recent research has demonstrated that hybridization – the production of viable25

o↵spring between distinct species – is far more common than previously thought (Mallet,26

2005; Taylor and Larson, 2019). Hybridization seems to be particularly frequent in rapidly27

diversifying clades (Meier et al., 2017; Patton et al., 2020; Mitchell and Whitney, 2021)28

and has also been linked to the emergence of new species through so-called hybrid29

speciation (Rieseberg et al., 1995; Lamichhaney et al., 2018; Runemark et al., 2018).30

Hybridization therefore appears to promote diversification in certain situations (Seehausen,31

2004; Abbott et al., 2013), contrary to the traditional view in which hybridization is seen32

as inhibiting speciation (Mayr, 1942).33

Recent studies have also revealed that even highly divergent species are sometimes34

still able to hybridize and backcross. Apart from records of interspecific hybrids within a35

genus, such as crosses between fin whale Balaenoptera physalus and blue whale B.36

musculus (Pampoulie et al., 2021), also intergeneric hybrids are known, for example37

between colubrid snakes of the genera Pituophis and Pantherophis (LeClere et al., 2012).38

Various other hybridization events between deeply divergent lineages have been reported,39

as for example among coral reef fishes (Pomacanthidae) with over 10% mitochondrial40
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RELIABLE DETECTION OF INTROGRESSION 3

divergence (Tea et al., 2020), even though the most extreme examples of hybridization41

between divergent lineages are known from captive specimens only (e.g., interfamilial42

hybrids between sturgeons, Acipenseridae, and paddlefishes, Polyodontidae; Káldy et al.43

2020). While the examples listed above refer to recent hybridization events, often detected44

through the observation of F1-hybrids, the fact that hybridization is recorded among45

divergent groups today suggests that it has also taken place in the distant past, when they46

were still more closely related.47

Introgression, the transfer of genetic material between species, can leave detectable48

traces in the genomes of extant taxa. Such traces are being reported from an increasing49

number of taxa, including highly divergent ones, and have been interpreted as evidence for50

“ancient introgression”. Such ancient introgression has for example been reported to have51

occurred between the Komodo dragon Varanus komodoensis and Australian monitor52

lizards (Varanidae) in the Late Miocene (11.6–5.3 million years ago; Ma) (Pavón-Vázquez53

et al., 2021), among North American darters (Percidae, e.g., the genus Allohistium) at54

least 20 Ma (MacGuigan and Near, 2019), or among sea turtles (Cheloniidae) (Vilaça55

et al., 2021) up to 46 Ma. In fungus gnats, germline-restricted genes were suggested to56

have introgressed between the ancestors of Sciaridae and Cecidomyiidae even as early as57

114 Ma (Hodson et al., 2022). In plants, ancient introgression has been reported for several58

groups of angiosperms (Stull et al., 2023). For example, birch tree species within59

Coryloideae (Betulaceae) were reported to have exchanged genes between 17 and 33 Ma60

(Wang et al., 2022; Stull et al., 2023) and ancient hybridization has been reported during61

the early diversification of asterids over 100 Ma, between the order Ericales and the62

ancestor of Cornales or Gentianidae (Stull et al., 2020, 2023).63

These reports raise the question whether methods for the detection of introgression64

from genomic data are still applicable to such old groups (Hibbins and Hahn, 2022), given65

that key methods were originally developed for analyses at the level of populations and66

recently diverged species. One of the most commonly used approaches for introgression67
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detection is the D-statistic, which was first applied to assess genetic exchange between68

Neanderthals and the ancestors of modern humans (Green et al., 2010). The D-statistic69

detects introgression through the so-called ‘ABBA-BABA test’ (Green et al., 2010; Durand70

et al., 2011), based on an imbalance in the sharing of ancestral (‘A’) and derived (‘B’)71

alleles across the genomes of four populations or species. This test assumes that, in the72

absence of introgression but presence of incomplete lineage sorting (ILS), two sister species73

share an equal proportion of derived ‘B’ alleles with any third species. A statistically74

significant excess of allele sharing in either direction (an excess of ‘ABBA’ or ‘BABA’75

sites) is then considered indicative of genetic exchange between non-sister taxa. Although76

misleading signals can under certain scenarios be created by population structure in77

ancestral species (Durand et al., 2011; Eriksson and Manica, 2012), the D-statistic is78

considered to be robust under a wide range of evolutionary scenarios when applied to79

genome-wide data (Zheng and Janke, 2018).80

However, the violation of two assumptions that are implicit in the use of the81

D-statistic can lead to false positive results: First, each variable site is assumed to result82

from a single substitution, and thus homoplasies – caused by independent substitutions at83

the same site in di↵erent species – are assumed to be absent. Randomly occurring84

homoplasies would not produce a false signal of introgression, because they are equally85

likely to increase the numbers of ‘ABBA’ and ‘BABA’ sites. Thus, a substitution that86

occurs in an outgroup to two sister species is equally likely to also occur in one or the87

other of the two sisters. But when a second assumption – that of uniform substitution88

rates across all species – is violated, homoplasies are more likely to occur in the sister89

species with the higher rate. This could lead to significantly unequal numbers of ‘ABBA’90

and ‘BABA’ sites and a D-statistic falsely supporting introgression (Pease and Hahn,91

2015; Amos, 2020; Frankel and Ané, 2023).92

Both violations, homoplasies and substitution-rate variation, are more likely to93

occur in older groups of species. Homoplasies require that sites are substituted on two94
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di↵erent branches of a phylogenetic tree, which occurs more often when these branches are95

longer. Substitution-rate variation, on the other hand, is influenced by factors such as96

metabolic rate, generation time, longevity, or temperature, that are all expected to be97

similar among closely related species but may vary with increasing phylogenetic distance98

(Wilson Sayres et al., 2011; Bromham, 2020; Hua and Bromham, 2017; Ivan et al., 2022;99

Hua et al., 2015). A misleading e↵ect of substitution-rate variation on the D-statistic,100

generating false-positive signals of introgression, has been suspected repeatedly (Pease and101

Hahn, 2015; Zheng and Janke, 2018; Hibbins and Hahn, 2022) and was recently supported102

by simulations under the birth-death-hybridization process (Justison et al., 2023; Frankel103

and Ané, 2023).104

To avoid the e↵ects of rate variation on introgression detection, a tree-based105

equivalent of the D-statistic has been used in several studies (Vanderpool et al., 2020;106

Ronco et al., 2021). In this approach, rooted phylogenetic trees are first built for a large107

number of loci (regions with hundreds to thousands of base pairs) across the genome, and108

the inferred set of trees is then analyzed for topological asymmetry in three-species subsets109

just like site patterns are in the D-statistic. Thus, the most frequent tree topology for a set110

of three species is assumed to represent their species tree, and the frequencies of the111

second- and third-most frequent topologies are compared to each other. A significant112

di↵erence in these frequencies is then interpreted as evidence of introgression. The test113

statistic has been named Dtree in Ronco et al. (2021) (who were unaware that a114

non-normalized version of this statistic had already been called � by Huson et al. 2005).115

Frequencies of tree topologies have also been used to infer introgression in other studies116

(Schumer et al., 2016; Gante et al., 2016; Figueiró et al., 2017; Martin and Van Belleghem,117

2017; Suvorov et al., 2022). One might expect that, as a tree-based alternative to the118

D-statistic, Dtree would be more robust to homoplasies, given that the occurrence of one or119

few homoplasies per locus should not have an e↵ect on the tree topology (Hibbins and120

Hahn, 2022; Frankel and Ané, 2023). On the other hand, homoplasies in combination with121
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rate variation can lead to long-branch attraction (Felsenstein, 1978), which might bias122

tree-topology frequencies even if their e↵ect on each individual tree is weak.123

Here, we use simulations to test the robustness of introgression detection methods124

to the combined e↵ects of homoplasies and rate variation, as expected to occur in older125

groups of species. We simulate genomic datasets under a wide range of settings, including126

varying population sizes, divergence times, recombination rates, mutation rates,127

introgression rates, and degrees of among-species rate variation. Besides the D-statistic128

and its tree-based equivalent Dtree, we apply three further tree-based methods to detect129

introgression in complementary ways: the phylogenetic network approach implemented in130

SNaQ (Soĺıs-Lemus et al., 2017), the approach based on branch-length distributions131

implemented in QuIBL (Edelman et al., 2019), and a method based on divergence-time132

distributions in time-calibrated phylogenies. The latter method was presented by Meyer,133

Matschiner, and Salzburger (2017), and will henceforth be called “MMS17 method”. We134

hypothesized that all of these methods could produce false signals of introgression when135

among-species rate variation is present, and that these signals would become stronger with136

increasing age of the introgression event, mutation rates, and degree of rate variation. Our137

results confirm that the D-statistic, as well as some of the tested tree-based methods are138

a↵ected by rate variation. To distinguish between true signals of introgression and the false139

signals resulting from rate variation, we developed a new test based on the distribution of140

‘ABBA’ sites on the genome, and we implemented this test into the introgression analysis141

software Dsuite (Malinsky et al., 2021). We assess the performance of this new test with142

simulated and empirical datasets, and confirm its suitability across a broad range of143

parameters.144
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Materials and Methods145

Simulations146

To test the performance of commonly applied introgression detection methods,147

genomic data were simulated under diverse scenarios. All simulations were conducted in148

the Python version 3.8.6 environment using the program msprime v.1.0 (Baumdicker et al.,149

2021). A four-taxon phylogeny was defined for the species P1, P2, P3, and P4, in which P1150

and P2 were sister species and P4 was the outgroup to all others. The divergence of species151

P1 and P2, tP1,P2, was set to occur either 10, 20, or 30 million generations ago, with152

species P3 and P4 in each case set to branch o↵ 10 and 20 million generations earlier,153

respectively. Thus, the most recent common ancestor of the four species dated to between154

30 and 50 million generations ago (Fig. 1), and the internode distances were in all cases155

identical, which implied that the expected degree of ILS remained identical. All simulated156

species had identical and constant e↵ective population sizes (Ne), set to either Ne = 104 or157

Ne = 105 in separate simulations. An e↵ective population size of Ne = 106 was used in158

exploratory simulations, but as these simulations were too computationally demanding and159

their results did not seem to di↵er from those based on smaller population sizes, final160

simulations were based on the two smaller population sizes. We conducted one set of161

simulations that did not include any genetic exchange between species while other162

simulations included introgression between species P2 and P3. In these cases, P2 and P3163

exchanged migrants with a rate m of either m = 10�9 (“very weak”), m = 10�8 (“weak”),164

m = 10�7 (“strong”), or m = 10�6 (“very strong”) per individual per generation, which is165

equivalent to the exchange of one migrant on average every 102 � 105 generations when166

Ne = 104 or every 10� 104 generations when Ne = 105. In all simulations, migration167

between P2 and P3 occurred for the same period of time, beginning with the divergence of168

P1 and P2 and ending 2.5 million generations later (Fig. 1).169

Based on this model of divergence and introgression, we simulated the evolution of170

the genomes of the four species, modeling these as a single chromosome with a length of 20171
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Fig. 1 Four-taxon phylogenies used in simulations. Divergence times of species P1 and P2 (tP1,P2) are 10, 20, and
30 million generations in the past, with P3 and P4 branching o↵ 10 and 20 million generations earlier, respectively.
Species P2 evolved with a mutation rate that was either unchanged (scale factor s = 1; a,b) or slower (s = 0.25;
illustrated in blue in c,d) than the mutation rate of all other species (besides s = 0.25, both a less extremely
reduced rate and faster rates of species P2 were simulated with s = 0.5, s = 2, and s = 4, but are not shown
here). In simulations that included introgression (b,d), this introgression occurred symmetrically between P2 and
P3, beginning with the divergence of P1 and P2, and continuing for 2.5 million generations (illustrated in red in
b,d). Any reliable method for introgression detection should identify a signal for b and d but not for a and c.

million basepairs (Mbp). The recombination rate r of this chromosome was set to r = 10�8
172

and the mutation rate µ was set to either µ = 10�9 or µ = 2⇥ 10�9 in separate simulations173

(both rates are given per site per generation). Mutations were simulated under the174

Hasegawa-Kishino-Yano (HKY) model (Hasegawa et al., 1985) with a175

transition-transversion rate ratio  = 2. Finally, we implemented among-species variation176

in the mutation rate to model a decreased, unchanged, or increased rate in species P2,177

with the rate change taking place immediately after its divergence from P1. Because178

msprime does not allow mutation-rate variation among species, we used a work-around179

with the same outcome, extending or shortening the branch leading to P2 with a scale180

factor s. We repeated the simulations using each of the five scale factors s = 0.25 (“very181

slow P2”), s = 0.5 (“slow P2”), s = 1 (“unchanged P2”), s = 2 (“fast P2”), and s = 4182

(“very fast P2”) to model varying degrees of among-species rate variation. For each of the183
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RELIABLE DETECTION OF INTROGRESSION 9

four simulated species, we sampled ten haploid chromosomes to form diploid genomes for184

five individuals per species. To implement the above-mentioned work-around for s = 0.25185

and s = 0.5, we sampled individuals from species P2 at a time point in the past so that the186

length of its branch was e↵ectively divided by 2 or 4. For s = 1, all samples were taken at187

the present. With scale factors s = 2 and s = 4, P2 was sampled at the present, but all188

divergences were shifted into the past by the amount of generations by which the P2189

branch was extended, and P1, P3, and P4 were instead sampled in the past. In summary,190

we performed simulations with all possible combination of191

tP1,P2 2 {1⇥ 107, 2⇥ 107, 3⇥ 107}, Ne 2 {104, 105}, m 2 {0, 10�9, 10�8, 10�7, 10�6},192

r = 10�8, µ 2 {1⇥ 10�9, 2⇥ 10�9}, and s 2 {0.25, 0.5, 1, 2, 4}; a total of 300 parameter193

combinations. For population size Ne = 105, mutation rate µ = 2⇥ 10�9, introgression rate194

m 2 {0, 10�8, 10�7}, and a P2 branch rate s 2 {0.25, 1, 4}, 50 replicates (shown in Fig.195

2–4) were simulated; for all the other parameter combinations, we performed ten replicate196

simulations (shown in Supplementary Figs. S1–S24), recording the resulting total genomic197

datasets in 4,080 files in the variant call format (VCF).198

The range of parameters used in our simulations was selected to be comparable199

with some of the study systems for which ancient introgression has been reported. In terms200

of divergence time and mutation rate, our simulations are comparable to the example of201

North American darters (MacGuigan and Near, 2019): The divergence of the two genera202

Allohistium and Simoperca, for which signatures of ancient introgression have been203

reported, can be placed around 22 million generations ago, assuming a generation time of 1204

year (Smith et al., 2011) and a divergence about 22 Ma (MacGuigan and Near, 2019). The205

mutation rates chosen for our simulations (µ 2 {10�9, 2⇥ 10�9}) also fall within estimates206

reported for darters as these range from around 6⇥ 10�10 to 9⇥ 10�9 per site and year207

(Smith et al., 2011).208
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Patterson’s D-statistic209

Patterson’s D-statistic (Green et al., 2010) measures signals of introgression in a210

species trio P1, P2, and P3 by counting the numbers of sites at which these species share211

alleles. Denoting ancestral alleles as ‘A’ and derived alleles as ‘B’, ‘ABBA’ sites are those212

at which P2 and P3 share the derived allele, while P1 and P3 share the derived allele at213

‘BABA’ sites. By definition, the allele carried by the outgroup P4 is considered the214

ancestral allele ‘A’. The D-statistic is then calculated as the di↵erence between the number215

of ‘ABBA’ sites CABBA and that of ‘BABA’ sites CBABA, normalized by the sum of these216

two numbers:217

D =
CABBA � CBABA

CABBA + CBABA
(1)

In the absence of introgression, CABBA and CBABA are expected to be equal, in218

which case D = 0. However, this expectation is based on several assumptions, including219

that of equal rates for species P1 and P2, which we violated in part of our simulations. We220

therefore expected that the D-statistic would indicate signals of introgression (in the form221

of significant p-values) in these simulated datasets even when no introgression occurred.222

We calculated the D-statistic for each of the 4,080 simulated genomic datasets with223

the program Dsuite v.r50 (Malinsky et al., 2021), using the program’s “Dtrios” module. By224

using the Dsuite implementation of the D-statistic, we were able to account for225

within-species variation in the calculation of CABBA and CBABA. When multiple individuals226

are sampled per species, Dsuite calculates CABBA and CBABA based on the frequencies of227

the ancestral and derived alleles within the species. With the frequency of the derived228

allele ‘B’ at site i in the genome of species j denoted as fB,j,i and a total number of sites n,229

CABBA =
nX

i=1

(1� fB,P1,i)⇥ fB,P2,i ⇥ fB,P3,i (2a)

230

CBABA =
nX

i=1

fB,P1,i ⇥ (1� fB,P2,i)⇥ fB,P3,i (2b)
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RELIABLE DETECTION OF INTROGRESSION 11

For both parts of Equation 2, Dsuite defines the derived allele as the one occurring231

at lower frequency in the outgroup P4 and multi-allelic sites are ignored. The significance232

of D was assessed with block jackknife tests, based on 20 equally sized subsets of each233

genomic dataset. In our interpretation of these results, we applied the Bonferroni234

correction (Bonferroni, 1935) to account for the large number of tests that we performed.235

Tree-based Introgression Detection Methods236

Besides the D-statistic, we applied four tree-based introgression detection methods237

to all datasets simulated with a population size of Ne = 105 and a mutation rate of238

µ = 2⇥ 10�9, a total of 1,830 datasets. To infer local trees as input for these methods,239

variants were extracted from equally spaced windows across the simulated chromosome.240

We separately extracted 5,000 windows of 200 bp, 2,000 windows of 500 bp, and 1,000241

windows of 1,000 bp from each of the 1,830 datasets. These window sizes were chosen as a242

compromise between too little phylogenetic information in shorter windows and the243

occurrence of within-window recombination in larger windows, which could bias any244

phylogenetic inference (Bryant and Hahn, 2020). With these selected window sizes and245

numbers, only 1 Mbp out of the 20 Mbp of the simulated chromosomes was used for246

phylogenetic analyses. Additionally, per species and variable site, only the first allele of the247

first individual was extracted. All invariable sites within windows were replaced with248

randomly selected nucleotides A, C, G, and T, thus forming a sequence alignment for each249

window. By using only one allele of one individual per species – instead of both alleles of250

the five simulated individuals – we again reduced the amount of data by a factor of ten.251

Consequently, for any given simulation, only 0.5% of the data used to calculate the252

D-statistic were also used for tree-based analyses. This data reduction was required due to253

the computational demands of our phylogenetic analyses: Because we used 1,830 genomic254

datasets in total and extracted 8,000 (5,000 + 2,000 + 1,000) windows from each of these,255

14.64 million alignments were produced. As each alignment was used for phylogenetic256
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12 KOPPETSCH, MALINSKY, AND MATSCHINER

analyses with both maximum-likelihood and Bayesian inference (see below), a total of257

29.28 million such analyses were required.258

Dtree — Conceptually similar to Patterson’s D-statistic, Dtree aims to detect259

introgression by comparing the counts of alternative rooted tree topologies for a given260

species trio, in a large set of local trees sampled across the genome. For any such trio P1,261

P2, and P3, three di↵erent rooted tree topologies can be found: One in which P1 and P2262

are sister species, one in which P1 appears next to P3, and one in which P2 and P3 are263

sisters. Like for the D-statistic, the assumptions of no introgression and no among-species264

rate variation predict that, if the most frequent of these tree topologies represents the265

species-tree, the other two should occur in equal frequencies due to ILS. Any significant266

di↵erence in the frequencies of the latter two topologies, assessed for example with a267

one-sided binomial test, can therefore be seen as support for introgression.268

In its unconstrained version (Ronco et al. 2021; also see Vanderpool et al. 2020),269

Dtree is calculated from the counts of the second- and third-most frequent rooted270

topologies for the species trio, C2nd and C3rd, as271

Dtree =
C2nd � C3rd

C2nd + C3rd
(3)

However, the use of this unconstrained version of Dtree may underestimate high272

levels of introgression when the most frequent tree topology of the three species does not273

reflect the species tree (due to very high levels of genetic exchange and/or very short274

internal branches). Therefore, we here applied a constrained version of Dtree to test275

explicitly for introgression between P2 and P3:276

Dtree =
CP2,P3 � CP1,P3

CP2,P3 + CP1,P3
, (4)

where CP2,P3 is the count of trees in which P2 and P3 are sisters, and CP1,P3 is the277

count of trees that place P1 and P3 next to each other.278
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RELIABLE DETECTION OF INTROGRESSION 13

To generate these counts, we inferred maximum-likelihood phylogenies from each279

window alignment of the 1,830 simulated genomic datasets using IQ-TREE v.2.1.2 (Minh280

et al., 2020), specifying the HKY substitution model (Hasegawa et al., 1985) and P4 as281

outgroup. The resulting tree sets were filtered by excluding trees with an internal branch282

shorter than 0.001 substitutions per site. We then obtained CP1,P3 and CP2,P3 by counting283

how often P1 and P3, or P2 and P3, respectively, were sister species in a set of trees. We284

did so separately for the sets of trees corresponding to each simulated genomic dataset and285

window size, by applying the Ruby script analyze tree asymmetry.rb (Ronco et al., 2021).286

Finally, a one-sided binomial test was used to identify whether CP2,P3 was significantly287

larger than CP1,P3 and thus supporting introgression between P2 and P3.288

SNaQ — The SNaQ (Species Networks applying Quartets) method, implemented289

in PhyloNetworks (Soĺıs-Lemus and Ané, 2016; Soĺıs-Lemus et al., 2017), is representative290

of a class of methods based on the multi-species coalescent model with hybridization291

(Meng and Kubatko, 2009). This class also includes approaches implemented in PhyloNet292

(Yu et al., 2014; Than et al., 2008; Yu and Nakhleh, 2015) or SpeciesNetwork (Zhang et al.,293

2018). From a set of local trees, SNaQ quantifies concordance factors for unrooted species294

quartets (either all possible quartets or a random sample) and calculates the likelihood for295

each of these quartets under the multi-species coalescent model with hybridization. By296

multiplying these likelihoods over all quartets, SNaQ derives the pseudolikelihood for a297

given species network. A heuristic search then allows SNaQ to estimate the network that298

optimizes the pseudolikelihood for a given maximum number of hybridization events. Thus,299

by repeating the SNaQ analysis with a maximum number of 0 and 1 such events, support300

for hybridization can be evaluated from the di↵erence of the resulting pseudolikelihoods.301

The multi-species coalescent model with hybridization considers hybridization302

events on the species level that instantaneously copy part of the genome from one species303

to another. Thus, this model is violated by our simulations in a way in which it may also304

be violated by most empirical cases of hybridizing species: Our simulations model305
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14 KOPPETSCH, MALINSKY, AND MATSCHINER

hybridization between individuals that over long time scales (2.5 million generations) of306

ongoing introgression and subsequent drift, recombination, and occasional fixation has a307

gradual e↵ect on the genomes of the recipient species. We expected that – barring other308

model violations – fitting such a period of hybridization and introgression to the309

multi-species coalescent model with hybridization would lead to the inference of a single310

hybridization event between species. Nevertheless, we expected that the support for this311

inferred hybridization event would correlate with the truth – i.e., the presence and the rate312

of introgression used in our simulations. We quantified this support as the di↵erence in the313

Akaike information criterion (dAIC) (Akaike, 1974) for models that did or did not include314

a hybridization event, and considered dAIC values above 10 as significant. It has been315

pointed out that criteria like the Akaike information criterion are not generally suitable for316

the pseudolikelihoods estimated by SNaQ (Hibbins and Hahn, 2022). However this317

criterion is applicable in our case, because with no more than four species (i.e., a single318

quartet), SNaQ estimates the actual likelihood and not the pseudolikelihood (Soĺıs-Lemus319

and Ané, 2016). We calculated the dAIC supporting introgression separately for each320

simulated genomic dataset and each of the three window sizes (200, 500, and 1,000 bp),321

based on the maximum-likelihood tree sets inferred for these windows with IQ-TREE,322

again excluding trees in which the internal branch was short (< 0.001 substitutions per323

site). We used PhyloNetworks v.0.14.2 for these analyses, providing the correct species tree324

as starting tree and specifying P4 as the outgroup when calling SNaQ.325

QuIBL — QuIBL (Quantifying Introgression via Branch Lengths) is an approach326

to estimate proportions of introgressed loci based on the distribution of branch lengths in a327

species trio (Edelman et al., 2019). By using branch lengths as a source of information,328

QuIBL is complementary to SNaQ, as the latter is informed exclusively by the topologies329

of a set of local trees. All species trios in a given dataset are used by QuIBL and examined330

independently of each other. Per trio, QuIBL sorts the set of local trees into three subsets,331

one for each of the three possible rooted topologies of the triplet. For each of the three332
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RELIABLE DETECTION OF INTROGRESSION 15

subsets, QuIBL then determines the distribution of the lengths of the internal branch (in333

numbers of substitutions per site), across all of the local trees within the subset. Applying334

an expectation-maximization algorithm in combination with the Bayesian information335

criterion (BIC) (Schwarz, 1978), it uses the shape of these distributions to determine336

whether they result from a single process (i.e., ILS) or additionally from a second process.337

This second process is interpreted either as lineage sorting within a common ancestor or338

introgression, depending on the relationships of the three species in a predetermined339

species tree. In the latter case, the number of local trees in the respective subset,340

multiplied by the proportion of them assigned to introgression rather than ILS, quantifies341

the overall introgression proportion. Like the multi-species coalescent model with342

hybridization implemented in SNaQ, the assumptions behind QuIBL also include a single343

pulse of hybridization instead of continuous introgression over a period of time (Edelman344

et al., 2019).345

We applied QuIBL to the filtered sets of local trees generated using IQ-TREE for346

the 1,830 genomic datasets and each of the three window sizes. The QuIBL parameters347

included a likelihood precision treshold (“likelihoodthresh”) of 0.01, a limit of 50 steps for348

the expectation-maximization algorithm (“numsteps”), and a scale factor of 0.5 to reduce349

the step size when an ascent step fails (“gradascentscalar”), as recommended by the350

authors. We further specified P4 as the outgroup to the trio formed by P1, P2, and P3.351

The results of QuIBL analyses were processed with the quiblR library352

(https://github.com/nbedelman/quiblR). Following Edelman et al. (2019), we considered353

support for introgression significant when the di↵erence in BIC values (dBIC) was greater354

than 10.355

MMS17 method — A fourth class of tree-based introgression detection methods356

uses distributions of divergence times in a set of ultrametric, time-calibrated local trees357

(Marcussen et al., 2014; Fontaine et al., 2015; Meyer et al., 2017). Of this class, we here358

apply the method developed by Meyer, Matschiner, and Salzburger (2017) (“MMS17359
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16 KOPPETSCH, MALINSKY, AND MATSCHINER

method”). This method compares the mean divergence times for all three possible pairs of360

species within a species trio, repeating this comparison for all possible species trios of a361

given dataset. For the species trio P1, P2, and P3, the mean ages of the most recent362

common ancestor (MRCA) of the pairs P1–P2, P1–P3, and P2–P3 are calculated over all363

local trees. If P1 and P2 are sister species and no introgression occurred with P3, the364

P1–P3 and P2–P3 mean MRCA age estimates are expected to be similar in the absence of365

introgression. In contrast, any introgression occurring between non-sister species should366

reduce one of these two mean MRCA ages (while increasing the P1–P2 mean MRCA age).367

The di↵erence between these pairwise mean MRCA (dMRCA) ages is therefore informative368

about past introgression within the species trio – the larger dMRCA, the stronger the369

evidence for introgression (Meyer et al., 2017). On the other hand, the MMS17 method370

does not include a formal statistical test allowing one to reject the null hypothesis of no371

introgression. It has therefore been designed and used only to identify hypotheses of372

introgression that can then be tested with other methods (Meyer et al., 2017).373

We used the Bayesian program BEAST2 v.2.6.4 (Bouckaert et al., 2019) to infer374

sets of time-calibrated local trees using the three alignment window sizes (200, 500, and375

1,000 bp) for each of the 1,830 simulated genomic datasets. Per alignment, an input file for376

BEAST2 was produced with the babette library (Bilderbeek and Etienne, 2018), specifying377

the birth-death tree process as a tree prior (Gernhard, 2008) and the HKY substitution378

model (Hasegawa et al., 1985). Each tree was time-calibrated with a strict-clock model and379

an age constraint on the root. This constraint was defined as a log-normal prior380

distribution with a mean according to the true root age used in the simulation of the381

respective dataset (assuming a generation time of one year) and a narrow standard382

deviation of 0.001. Each BEAST2 analysis was performed with 5 million Markov-chain383

Monte Carlo iterations. Upon completion of each BEAST2 analysis, the resulting posterior384

tree distribution was summarized in the form of a maximum-clade-credibility tree with385

TreeAnnotator v.2.6.4 (Heled and Bouckaert, 2013). For each of the 1,830 genomic386
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RELIABLE DETECTION OF INTROGRESSION 17

datasets and each window size, we used all produced summary trees jointly as input for387

the MMS17 method, as described above.388

‘ABBA’-Site Clustering389

In this manuscript, we propose a new test to discriminate between spurious and390

genuine signals of introgression based on clustering of ‘ABBA’ sites. This test aims to391

distinguish between homoplasies and introgressed sites, exploiting the fact that392

introgression typically leaves behind haplotypes with clusters of multiple linked variable393

sites that show the introgression pattern. On the other hand, homoplasies are expected to394

occur individually one by one. Our new “ABBA-site clustering” test therefore examines395

whether the ‘ABBA’ sites that are used for the D-statistic cluster among variable sites396

along chromosomes – which would support introgression – or whether they are distributed397

homogeneously as expected of homoplasies (although homoplasies can show limited398

clustering as a result of mutation-rate variation along the genome; see below).399

As a first step, we identify “strong ABBA sites” for which most of the individuals in400

the dataset support the ‘ABBA’ pattern. Formally, these are sites for which401

(1� fB,P1) fB,P2 fB,P3 (1� fB,P4) + fB,P1 (1� fB,P2) (1� fB,P3) fB,P4 > 0.5, (5)

where fB,P1, fB,P2, fB,P3, and fB,P4 are the frequencies of the derived allele ‘B’ in402

populations P1, P2, P3, and the outgroup (see Equation 4a in Malinsky et al. 2021). We403

then test for clustering of these sites along chromosomes in two ways, the first of which is404

more sensitive, while the other one is robust to mutation-rate variation along the genome.405

For the “sensitive” version of the test, we let ~g be a vector of all polymorphic sites406

on a chromosome or sca↵old. We then define another vector ~i, where we record the indices407

of “strong ABBA sites” within ~g. For data from multiple chromosomes or sca↵olds, vectors408

~gc and ~ic are first calculated for each such unit c and then concatenated to form ~g and ~i.409

We divide the values in ~i by the length of ~g (the number of polymorphic sites in the410

dataset), obtaining a normalized vector ~in on the interval [0,1]. To test for clustering of411
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18 KOPPETSCH, MALINSKY, AND MATSCHINER

“strong ABBA sites” we compare this normalized ~in to the standard uniform distribution412

using a one-sample Kolmogorov-Smirnov test (Kolmogorov, 1933; Simard and L’Ecuyer,413

2011). A significant test statistic supports clustering of “strong ABBA sites” among414

polymorphic sites along chromosomes and thus provides additional support for interpreting415

any signal of introgression as being genuine.416

Under certain circumstances (see Results), the “sensitive” test version can show a417

clustering of “strong ABBA sites” arising purely from variation in the mutation rate along418

the chromosome. Therefore, we developed a second, “robust” version of the419

‘ABBA’-site-clustering test, in which we replace vector ~g with a vector ~h that includes not420

all polymorphic sites, but only “strong ABBA sites” and the analogously identified “strong421

BABA sites”. This test version is robust because local mutation-rate variation increases422

the frequencies of “strong ABBA sites” and “strong BABA sites” equally in mutation423

hotspots. On the other hand, this version of the test is less sensitive than the first version,424

especially in cases where there are few strong ‘BABA’ sites; thus, for example, this test425

version might not detect strong introgression in the absence of ILS.426

We implemented both versions of this test in the software Dsuite, where they can427

be called jointly with the function “--ABBAclustering” of the Dtrio module (Malinsky428

et al., 2021). We then assessed the power and reliability of both test versions by applying429

them to all simulated genomic datasets.430

As a further evaluation of the performance of the ‘ABBA’-site-clustering test, we431

also applied it to an empirical dataset that we expected to be free from introgression but432

characterized by ILS. Specifically, we used a subset of the single-nucleotide polymorphism433

(SNP) data of Ronco et al. (2021), based on Illumina sequencing for all ⇠ 250 cichlid fish434

species of Lake Tanganyika and mapping to the Nile tilapia reference assembly (Conte435

et al., 2017). As the investigation by Ronco et al. (2021) had shown, introgression has436

occurred frequently among cichlid species within the taxonomic tribes of the Lake437

Tanganyika cichlid radiation, but only rarely among species of di↵erent tribes. We438
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therefore reduced the SNP dataset of Ronco et al. (2021) to individuals of up to five439

randomly selected species from each of the four tribes Boulengerochromini (monotypic,440

including only Boulengerochromis microlepis), Lamprologini, Cyprichromini, and441

Tropheini, considering only quartets with one species per tribe. To the best of our442

knowledge, introgression between these tribes has not previously been reported and443

appeared absent in the study of Ronco et al. (2021). After subsetting the SNP dataset to444

include only the selected species, newly monomorphic sites were removed with BCFtools445

v.1.17 (Li, 2011). Both versions of the ‘ABBA’-site clustering test were then applied to the446

resulting SNP data subsets with Dsuite’s Dtrio module (placing B. microlepis as447

outgroup), while also calculating the D-statistic and its significance.448

Results449

Simulations450

The numbers of variable sites in simulated datasets ranged from 1.46–8.20 million451

(7.3–41.0%), depending primarily on the mutation rate µ and the divergence time tP1,P2452

(Table 1). Between 35,000 and 1.3 million (0.175–6.5%) of these sites were multi-allelic.453

The alignments of lengths 200, 500, and 1,000 bp had mean numbers of variables sites454

between 14.6 and 410.2 (Table 1). Pairwise genetic distances between species (dxy) for455

datasets with a population size Ne = 105, a mutation rate µ = 2⇥ 10�9, and a456

recombination rate r = 10�8 ranged from 0.03 to 0.08 among P1 and P2 (dxy(P1,P2)) with457

a very slow P2 rate (s=0.25), and from 0.09 to 0.25 with a very fast P2 rate (s=4) (see458

Supplementary Table S4).459

The simulated data based on the divergence model in Figure 1 had very little or no460

ILS. While the mean lengths of chromosomal regions unbroken by recombination – termed461

“c-genes” by Doyle (1995) – were between 18 and 20 bp, the lengths of chromosomal462

regions sharing the same species topology (“single-topology tracts”) were far longer.463
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20 KOPPETSCH, MALINSKY, AND MATSCHINER

Table 1. Numbers of variable sites in simulated genomic datasets and alignments. Alignments with lengths of 200,
500, and 1,000 bp were extracted from the genomic datasets and used for tree-based inference methods. Ne:
e↵ective population size; µ: mutation rate; tP1,P2:divergence time. The specified minimum and maximum values
represent mean values obtained for a specific combination of all simulation parameters, across all simulation
replicates for this parameter combination (see Supplementary Table S1 for a comprehensive overview of the
numbers of variable, biallelic, and multiallelic sites per simulated dataset, as well as the numbers of variable and
parsimony-informative sites per alignment lengths of 200, 500, and 1,000 bp).

Variable sites Multi-allelic sites Variable sites in alignments
Ne µ tP1,P2 (⇥106) (⇥103) 200 bp 500 bp 1,000 bp
104 1⇥ 10�9 1⇥ 107 1.46 – 2.27 35 – 85 14.6 – 22.7 36.5 – 56.8 73.2 – 113.5
104 1⇥ 10�9 2⇥ 107 2.06 – 3.47 69 – 205 20.6 – 34.7 51.4 – 86.8 102.9 – 173.5
104 1⇥ 10�9 3⇥ 107 2.63 – 4.59 115 – 368 26.3 – 45.9 65.7 – 114.6 131.4 – 229.5
104 2⇥ 10�9 1⇥ 107 2.82 – 4.28 133 – 318 28.1 – 42.8 70.4 – 107.1 140.5 – 214.0
104 2⇥ 10�9 2⇥ 107 3.90 – 6.33 261 – 737 39.0 – 63.3 97.4 – 158.4 194.9 – 316.8
104 2⇥ 10�9 3⇥ 107 4.92 – 8.12 428 – 1,281 49.2 – 81.2 123.0 – 203.1 246.0 – 405.9
105 1⇥ 10�9 1⇥ 107 1.54 – 2.33 39 – 90 15.4 – 23.3 38.5 – 58.3 77.0 – 116.6
105 1⇥ 10�9 2⇥ 107 2.12 – 3.53 74 – 211 21.2 – 35.3 53.2 – 88.2 106.1 – 176.4
105 1⇥ 10�9 3⇥ 107 2.70 – 4.64 121 – 377 27.0 – 46.4 67.4 – 116.1 134.8 – 232.1
105 2⇥ 10�9 1⇥ 107 2.96 – 4.39 147 – 335 29.6 – 43.9 73.9 – 109.7 147.8 – 219.5
105 2⇥ 10�9 2⇥ 107 4.02 – 6.43 279 – 762 40.2 – 64.3 100.4 – 160.7 201.0 – 321.4
105 2⇥ 10�9 3⇥ 107 5.03 – 8.20 448 – 1,311 50.3 – 82.0 125.6 – 205.1 251.5 – 410.2

Without introgression (m = 0), almost all simulated chromosomes (58 out of 60 for which464

we made this assessment) had the same topology – that of the species tree – from465

beginning to end. The two exceptions were datasets simulated with the population size466

Ne = 105 that included three and two single-topology tracts, respectively.467

With introgression rates increasing from m = 10�9 to m = 10�7, the mean lengths468

of single-topology tracts decreased from a minimum of 64,516 bp (and a maximum of the469

chromosome length) to a range between 7,132 and 10,010 bp with a population size of470

Ne = 104, and from 22,026–217,391 bp to 422–789 bp with Ne = 105. However, with the471

highest simulated rate of introgression m = 10�6, the lengths of single-topology tracts472

mostly increased again, to 2,246–95,238 bp with Ne = 104 and to 86–1,277 bp with473

Ne = 105 (Supplementary Table S1). The reason for this was a dominance of regions with474

introgression in these chromosomes, causing them to form single-topology tracts.475

While only 0–3.7% of the chromosome were a↵ected by introgression with476

m = 10�9, these proportions grew to 1.4–10.0%, 30.6–46.5%, and 95.7–99.5% with477

m = 10�8, 10�7, and 10�6, respectively. Because of these extreme di↵erences, we focus on478
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Fig. 2 Patterson’s D-statistic for datasets simulated with a population size Ne = 105, a mutation rate µ = 2⇥ 10�9,
either no (m = 0; a,d), weak (m = 10�8; b,e), or strong (m = 10�7; c,f) introgression, and either an unchanged (s =
1; a–c) or slow (s = 0.25; d–f) rate of branch P2. All results obtained with other settings are given in Supplementary
Table S1 and illustrated in Supplementary Figures S1–S4. Per divergence time tP1,P2 2 {1 ⇥ 107, 2 ⇥ 107, 3 ⇥ 107},
the D-statistic is shown for 50 replicate simulations. Circles in black indicate significant results (p < 0.05), and only
these are summarized with box plots.

the scenarios of weak (m = 10�8) and strong introgression (m = 10�7), besides the scenario479

without introgression (m = 0), in the remainder of the Results section. We present all480

results, including those obtained with very weak (m = 10�9) and very strong introgression481

(m = 10�6) in the Supplementary Material.482

Patterson’s D-statistic483

As expected, Patterson’s D-statistic reliably indicated introgression when it was484

present and rate variation was absent (s = 1). With a population size Ne = 105 and485

mutation rate µ = 2⇥ 10�9 (Fig. 2), the D-statistic was below 0.015 and insignificant486

(p > 0.05) for all replicate datasets when introgression was absent (m = 0), regardless of487
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22 KOPPETSCH, MALINSKY, AND MATSCHINER

the divergence time tP1,P2 (Fig. 2a). With weak (m = 10�8) or strong introgression488

(m = 10�7), on the other hand, the D-statistic was in the ranges of 0.04–0.31 and489

0.33–0.73, respectively, and in all cases highly significant (p < 10�10) (Fig. 2b,c). The490

D-statistic was lower (0–0.05) and in some cases not statistically significant in settings491

with very weak (m = 10�9) introgression, and higher (0.59–0.87) and always significant492

(p < 10�16) in settings with very strong (m = 10�6) introgression (Supplementary Fig. S2).493

In all cases, the D-statistic decreased with increasing age of the phylogeny (i.e. with494

tP1,P2), suggesting that both false and true signals of introgression would be even stronger495

in groups with younger divergences. This decrease with age was caused by homoplasies and496

reversals accumulating on the longer branches of the older phylogenies, augmenting both497

CABBA and CBABA (Supplementary Note 1). Simulations with a lower population size498

(Ne = 104) or a lower mutation rate (µ = 1⇥ 10�9) produced the same patterns499

(Supplementary Figs. S1, S3, and S4).500

In contrast to the results obtained without rate variation, the D-statistic was not a501

reliable indicator of introgression when rate variation was present. While the D-statistic502

was significant for nearly all datasets simulated with introgression (Supplementary Figs.503

S1–S4), it was also significant for all datasets simulated without introgression (m = 0)504

whenever rate variation was present. In these cases, the D-statistic ranged from 0.05 to505

0.21 (p < 4.4⇥ 10�10) (Fig. 2d; Supplementary Figs. S1–S4).506

Like the decrease of the D-statistic with increasing age of the phylogeny, the507

false-positive signals of introgression were caused by homoplasies and reversals. This can be508

explained focusing on the results obtained with a very fast rate of the P2 branch (s = 4)509

on the youngest phylogeny (tP1,P2 = 10 million generations), shown in Supplementary510

Figure S2. The high D-statistic of 0.19–0.20 for these simulated datasets resulted from a511

CABBA in the range of 42,366–43,403 and a CBABA around 28,756–29,355. Perhaps contrary512

to expectations, this D-statistic does not support introgression between P2 and P3, but513

instead between P1 and P3 (Dsuite automatically rotates P1 and P2 so that D > 0). A514
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RELIABLE DETECTION OF INTROGRESSION 23

detailed analysis of one replicate simulation output explains this result: As expected, the515

faster rate of evolution of P2 led to more homoplasies shared between P2 and P3 (11,583;516

considering only bi-allelic sites) than between P1 and P3 (3,314). However, as the outgroup517

P4 had a longer branch than P3, this di↵erence was more than compensated for by a518

greater number of homoplasies between P2 and P4 (16,856) compared to P1 and P4519

(4,690). Additionally, far more reversals of substitutions in the common ancestor of P1, P2,520

and P3 occurred on the branch leading to P2 (5,990) than on that leading to P1 (1,697),521

further increasing allele sharing between P1 and P3. The remaining di↵erence between522

CABBA and CBABA may be explained by multi-allelic sites, of which there were 21,123.523

The D-statistic was similarly high, in the range of 0.18–0.20, in datasets produced524

without introgression (m = 0) and a very slow rate of the P2 branch (s = 0.25), but it525

supported introgression between P2 and P3, not between P1 and P3, in these instances526

(Fig. 2d). As in the cases with an increased P2 rate, the imbalance between a CABBA of527

11,565–12,098 and a CBABA of 7,877–8,211 is explained by homoplasies and reversals:528

While P1 and P3 shared more homoplasies (3,282) than P2 and P3 (1,046), P1 also shared529

even more homoplasies with P4 (4,679; compared to 1,493 homoplasies shared between P2530

and P4). Additionally, more reversals of substitutions in the common ancestor of P1, P2,531

and P3 occurred on the branch leading to P1 (1,637) compared to P2 (509), resulting in532

more allele sharing between P2 and P3 and thus the imbalance between CABBA and CBABA.533

The false signals of introgression were not exclusive to the datasets simulated with534

extreme rate variation (s = 0.25 and s = 4), but also a↵ected the datasets with more535

modest rate variation (s = 0.5 and s = 2). While the D-statistic was lower in these cases536

(0.05–0.14), it remained highly significant for all these datasets (p < 10�9) (Supplementary537

Figs. S1–S4).538

Tree-based Introgression Detection Methods539
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Fig. 3 Signals of introgression detected with tree-based methods for datasets simulated with a population size
Ne = 105, a mutation rate µ = 2⇥10�9, either no (m = 0), weak m = 10�8, or strong (m = 10�7) introgression, either
an unchanged (s = 1) or very slow (s = 0.25) rate of branch P2, and an alignment length of 500 bp. All results obtained
with other settings are shown in Supplementary Figures S5–S16. Per divergence time tP1,P2 2 {1⇥107, 2⇥107, 3⇥107},
results are shown for 50 replicate simulations. Each result is based on 2,000 local trees. a–f) Dtree; g–l) dAIC
supporting introgression in networks produced with SNaQ; m–r) introgression proportion estimated with QuIBL;
s–x) dMRCA estimated with the MMS17 method, in units of million generations. In a–r, circles in black indicate
significant results (p < 0.05; before Bonferroni correction), and only these are summarized with box plots. As
significance is not assessed with the MMS17 method, all values are shown in black in s–x.

Dtree — Sets of maximum-likelihood trees, generated for the 1,830 simulated540

datasets, produced high Dtree values up to around 1, even when no introgression was541

present (Fig. 3a,d). This pattern did not seem to be a↵ected by rate variation (Fig. 3d),542
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RELIABLE DETECTION OF INTROGRESSION 25

and was found with the alignment lengths 200, 500, and 1,000 bp (Fig. 3a,d;543

Supplementary Figs. S5–S7). The applied binomial test did not support a significant544

di↵erence (p > 0.05) between CP2,P3 and CP1,P3 in all cases without introgression. These545

high but non-significant Dtree values resulted from stochastic variation in the small546

numbers of trees that are not concordant with the species phylogeny. For example, with547

the youngest phylogeny (tP1,P2 = 10 million generations) and an alignment length of 500548

bp, no more than 14 out of 2,000 trees were discordant for any of the 50 replicates with P2549

branch rate s 2 {0.25, 1, 4}. With older phylogenies and the same alignment length, these550

numbers of discordant trees remained in the ranges of 4–46 and 17–139, for tP1,P2 = 20 and551

tP1,P2 = 30 million generations, respectively.552

The lack of significance could indicate that unlike Patterson’s D-statistic, Dtree553

might be robust to rate variation. Alternatively, however, it could also result from the554

reduced amount of data used in tree-based analyses (covering only 1 Mbp of the 20555

Mbp-chromosome). If rate variation combined with homoplasies would influence the ratio556

of CP2,P3 and CP1,P3, it is conceivable, that this becomes apparent only with larger557

numbers of discordant trees. To test whether the small numbers of discordant trees may558

hide a weak influence of rate variation, we compared the mean values for CP2,P3 and CP1,P3559

across all replicates for settings with s < 1 and s > 1 (Supplementary Table S2). We560

expected that if rate variation a↵ected Dtree in the same direction as Patterson’s D, the561

mean values of CP2,P3 should generally be larger than those for CP1,P3 when s < 1, and vice562

versa. Focusing only on those settings for which we had simulated 50 replicate datasets,563

this was in fact the case for 10 out of 12 settings (the two mean values being small and564

equal in the remaining two settings) (Supplementary Table S2). Thus, homoplasies and565

rate variation appear to influence topologies in the same direction as they influence site566

patterns. However their e↵ect on tree topologies appears minimal, so that it can only be567

noticed when assessing a large number of replicate analyses jointly. Moreover, the influence568

of homoplasies and rate variation on Dtree was clearly far weaker than the e↵ect of true569
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26 KOPPETSCH, MALINSKY, AND MATSCHINER

introgression. When introgression was included in the simulations, its presence was reliably570

detected for migration rates m > 10�8, regardless of divergence time tP1,P2 or alignment571

length (Fig. 3; Supplementary Figs. S5–S7). Like Patterson’s D-statistic, Dtree values were572

decreasing with increasing divergence times (e.g., Fig. 3b). This was apparently caused by573

added stochasticity in tree topologies resulting from homoplasious substitutions, as both574

types of discordant trees became more frequent with older divergence times575

(Supplementary Table S3).576

SNaQ — The maximum-likelihood values reported by SNaQ were in all cases577

equally good or better for the model that included a hybridization event, compared to the578

hybridization-free model (Supplementary Table S1). No e↵ect of rate variation was579

recorded, and SNaQ correctly favored the model without hybridization when analyzing580

data simulated without introgression (Fig. 3g,j; Supplementary Figs. S8–S10). However,581

SNaQ had a low power to detect weak introgression (m 6 10�8) (Fig. 3h,k; Supplementary582

Figs. S8–S10). Only with a strong introgression rate in the simulations (m > 10�7) did583

SNaQ detect significant signals of it (e.g., Fig. 3i,l). The dAIC values ranged from 0.60 to584

10.36 (with a single significant dAIC value > 10; Fig. 3k) when weak introgression585

(m = 10�8) was present (Fig. 3h,k), but increased to significant values between 39.43 and586

73.06 with strong introgression (m = 10�7) (Fig. 3i,l). As with Patterson’s D-statistic or587

Dtree, signals of introgression became weaker with increasing divergence times (Fig. 3i,l),588

probably because of the generally higher numbers of discordant trees inferred in those589

cases. The patterns described above were equally found with all tested alignment lengths590

(Supplementary Figs. S8–S10), and therefore seemed to be una↵ected by it.591

QuIBL — QuIBL produced signals of introgression even when neither rate592

variation nor introgression were present (s = 1, m = 0). Analyzing sets of trees generated593

for alignments of 500 bp, four out of 50 simulation replicates with tP1,P2 = 20 million594

generations and ten replicates with tP1,P2 = 30 million generations produced significant595
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RELIABLE DETECTION OF INTROGRESSION 27

results (Fig. 3m). This changed dramatically for di↵erent alignment lengths. With trees596

produced under these settings (s = 1, m = 0) for alignments of 200 bp, QuIBL reported597

significant results for all ten replicates, regardless of phylogeny age (Supplementary Fig.598

S11). On the other hand, with alignments of 1,000 bp, none of the results were significant599

(Supplementary Fig. S13). Like the level of significance, the introgression proportion600

estimated by QuIBL was higher with shorter alignments; ranging from 0.01 to 0.05 with601

alignments of 200 bp, from 0 to 0.01 with alignments of 500 bp, and remaining around 0602

when alignments of 1,000 bp were used (Supplementary Figs. S11–S13).603

Adding rate variation while still excluding introgression (m = 0) led to fewer604

significant results with decreased rates of the P2 branch (s < 1); however, even more605

significant results were found for faster rates (s > 1) (Fig. 3m,p; Supplementary Fig. S12).606

With a very slow rate (s = 0.25) of the P2 branch, 12 of the 50 replicate tree sets for607

alignments of 500 bp produced significant results, though only those with tP1,P2 = 30608

million generations (Fig. 3p). On the other hand, an increased rate of branch P2 (s = 4)609

led to even more significant false-positive signals of introgression, particularly for older610

phylogenies (2, 18, and 49 significant results out of 50 for tP1,P2 = 10, 20, and 30 million611

generations, respectively) (Supplementary Fig. S12). As before without rate variation, this612

pattern was a↵ected by the length of the alignments used to produce the tree sets. With613

alignments of 200 bp, almost all analyses produced significant results, while alignments of614

1,000 bp led to results that were in most cases non-significant (Supplementary Figs. S11615

and S13).616

When introgression was simulated with m > 10�7, QuIBL detected it reliably, but617

failed to detect it in most cases (478 out of 810 datasets) when m = 10�8. The618

introgression proportion was estimated between 0.01–0.08 with m = 10�8 and between 0.13619

and 0.24 with m = 10�7, which was influenced only to a minor degree by rate variation (s),620

phylogeny age (tP1,P2), and alignment length (Fig. 3n,o,q,r; Supplementary Figs. S11–S13).621
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MMS17 method — The MMS17 method performed as expected when neither622

rate variation nor introgression were present (Fig. 3s; Supplementary Figs. S14–S16), with623

a di↵erence between the two oldest pairwise mean MRCA ages (dMRCA) close to 0624

(between 0 and 0.07 million generations). With increasing levels of introgression, dMRCA625

was continuously growing, to 0.14–0.42 million generations when m = 10�8 and 1.58–2.47626

million generations when m = 10�7. Phylogeny age (tP1,P2) had no noticeable influence on627

dMRCA in these cases, but dMRCA was slightly higher with shorter alignments compared628

to longer ones (Pearson’s product-moment correlation, p < 0.001; Supplementary Figs.629

S14–S16).630

However, when rate variation was simulated, the MMS17 method became rather631

unreliable, particularly with faster rates (s > 1) of the P2 branch (Supplementary Figs.632

S14–S16). With the very fast P2 rate (s = 4) and the youngest phylogeny (tP1,P2 = 10633

million generations), dMRCA increased to values between 1.45 and 4.10 myr, again634

depending on alignment length (Pearson’s product-moment correlation, p < 0.001). These635

strong signals were the result of local trees in which P2 was incorrectly placed as the sister636

to a clade combining P1 and P3. As this placement allowed an extension of the P2 branch637

length, the inferred rate variation across the phylogeny was lowered, improving the prior638

probability of the tree in the strict-clock model. With the older phylogenies (tP1,P2 > 20639

million generations) and the very fast rate for the P2 branch (s = 4), the two oldest mean640

pairwise MRCA ages were no longer those between P1 and P3 and between P2 and P3,641

leading to erroneous signals (Supplementary Figs. S14–S16).642

In contrast, a slower rate (s 6 1) of the P2 branch did not have a strong influence643

on dMRCA (Fig. v). An increasing false signal of introgression with increasing age of the644

phylogeny could nevertheless be observed when the tree set was based on short alignments645

of 200 bp (Supplementary Fig. S14). In these cases, dMRCA ranged between 0.23 to 0.32646

million generations.647

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2024. ; https://doi.org/10.1101/2023.05.21.541635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.21.541635
http://creativecommons.org/licenses/by/4.0/


RELIABLE DETECTION OF INTROGRESSION 29

d e f

0

−10

−20

−30

−40

−50

lo
g(

p−
va
lu
e)

10 M 20 M 30 M 10 M 20 M 30 M 10 M 20 M 30 M

cba

0

−10

−20

−30

−40

−50

lo
g(

p−
va
lu
e)

10 M 20 M 30 M 10 M 20 M 30 M 10 M 20 M 30 M

no introgression
( m = 0 )

weak introgression
(        m = 10-8 )

strong introgression
(        m = 10-7 )

w
ith

 ra
te

 v
ar

ia
tio

n 
(s

 =
 0

.2
5)

w
ith

ou
t r

at
e 

va
ria

tio
n 

(s
 =

 1
)

t       
P1,P2

t       
P1,P2

t       
P1,P2

t       
P1,P2

t       
P1,P2

t       
P1,P2

Fig. 4 Signals of introgression detected with the “sensitive” version of the new ‘ABBA’-site clustering test for 50
replicate datasets simulated with a population size Ne = 105, a mutation rate µ = 2 ⇥ 10�9, either no (m = 0;
a,d), weak (m = 10�8 ; b,e), or strong (m = 10�7; c,f) introgression, and either an unchanged (s = 1; a–c), or
slow (s = 0.25; d–f) rate of branch P2. All results obtained with other settings are shown in Supplementary Figures
S17–S21. Circles in black indicate significant results (p < 0.05), and only these are summarized with box plots.
Significant results in a and d became non-significant after Bonferroni correction.

‘ABBA’-Site Clustering648

Across the tested parameter space, our new method based on ‘ABBA’-site649

clustering proved to be reliable in distinguishing false positives from genuine introgression650

signals (Figs. 4 and 5; Supplementary Figs. S17–S24). Applied to the datasets simulated651

without introgression (m = 0) and without rate variation (s = 1), the “robust” version of652

the test did not produce a single significant result (Fig. 5a; Supplementary Figs. S21–S24).653

While the “sensitive” version returned for the same parameters weakly significant654

false-positive signals for up to 7 out of 240 datasets (p > 0.0017; Fig. 4a; Supplementary655

Figs. S17–S20), all of these became non-significant after Bonferroni correction.656

Importantly, adding branch rate variation (s 2 {0.25, 0.5, 2, 4}) did not lead to false657
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30 KOPPETSCH, MALINSKY, AND MATSCHINER

positives. There were weakly significant (p > 0.0002) signals for 37 out of 720 datasets with658

the “sensitive” test, all of which became non-significant after Bonferroni correction (Fig.659

4d; Supplementary Figs. S17–S20). The “robust” test version again did not return a single660

false-positive (Fig. 5d; Supplementary Figs. S21–S24).661

Similar results were obtained with a variable recombination rate, where three out of662

90 datasets produced significant results with the “sensitive” test version (p > 0.01; all663

non-significant after Bonferroni correction; Supplementary Note S2, Supplementary Fig.664

S25) and none were significant with the “robust” test version (Supplementary Fig. S26).665

For increased levels of ILS (Supplementary Note S3; Supplementary Figs. S27–S32), 16 out666

of 360 significant values were recorded with the “sensitive” test version (p > 0.002)667

(Supplementary Figs. S27–S29), while a single significant value was recorded with the668

“robust” test version (p = 0.02) (Supplementary Figs. S30–S32). Again, all of these669

became non-significant after Bonferroni correction.670

Next, we assessed whether mutation-rate variation along the chromosome could lead671

to clustering of ‘ABBA’ sites and thus to false-positive signals in our new test. To this end,672

we performed an additional set of simulations (Supplementary Note S4) with among-site673

mutation-rate variation, and applied both versions of the ‘ABBA’-site-clustering test to674

these additional datasets. The presence of among-site mutation-rate variation led to some675

false positives in the “sensitive” version of the test (Supplementary Fig. S33). Of 30676

datasets simulated with neither introgression (m = 0) nor among-species rate variation677

(s = 1), 10 yielded significant signals of ‘ABBA’-site clustering (p > 0.00008), and one of678

these remained significant after Bonferroni correction. Adding among-species rate variation679

(s 2 {0.25, 4}) led to similar results (Supplementary Fig. S33). Of the 60 datasets680

simulated with these settings, 15 produced significant results (p > 3⇥ 10�7) and two of681

these remained significant after Bonferroni correction. In contrast, the among-site682

mutation rate variation did not influence the “robust” version of the test, producing not a683

single significant results when introgression was excluded (Supplementary Fig. S34).684

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2024. ; https://doi.org/10.1101/2023.05.21.541635doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.21.541635
http://creativecommons.org/licenses/by/4.0/


RELIABLE DETECTION OF INTROGRESSION 31

The presence of introgression led to significant ‘ABBA’-site clustering for a large685

majority of simulated datasets (Figs. 4,5; Supplementary Figs. S17–S24). The “sensitive”686

version of the test was always significant for strong (m > 10�7) and very strong rates687

(m > 10�6) of introgression (Fig. 4f; Supplementary Figs. S17–S20). All false negatives –688

cases that did not lead to significant clustering despite the presence of introgression – were689

limited to settings where the P2 rate was increased (s > 1) and introgression was weak690

(m = 10�8) or very weak (m = 10�9) (305 out of 600; for Ne 2 {104,105}) (Supplementary691

Figs. S17–S20). In contrast to the “sensitive” version, the “robust” version of the692

‘ABBA’-site-clustering test produced more false-negative results in the presence of693

introgression (Fig. 5e,f; Supplementary Figs. S21–S24). While fewer false-negative results694

were found with weak introgression (m = 10�8; 247 out of 660), particularly cases with695

very weak (m = 10�9; 261 out of 300), strong (m = 10�7; 394 out of 660), and very strong696

introgression rates (m = 10�6; 285 out of 300) did not lead to significant ‘ABBA’-site697

clustering when the population size was large (Ne = 105) (Fig. 5e,f; Supplementary Figs.698

S21–S22). For a lower population size (Ne = 104) fewer false-negative results were found:699

While cases with strong (m = 10�7; 61 out of 300), very strong (m = 10�6; 209 out of 300),700

and very weak introgression rates (m = 10�9; 182 out of 300) produced moderate numbers701

of false-negative results, only very few (3 out of 300) non-significant results were present702

with a weak rate of introgression (m = 10�8) (Supplementary Figs. S23–S24).703

Applying the ‘ABBA’-site-clustering test to the presumably introgression-free704

empirical dataset for four tribes of Lake Tanganyika cichlids led to the surprising result of705

highly significant clustering, regardless of whether the “sensitive” or “robust” version of706

the test were considered and which combinations of species were selected from the four707

tribes (p < 0.0002 in all cases). We investigated these results further by focusing on a708

randomly selected species quartet, comprising Tropheus polli (Tropheini), Cyprichromis709

pavo (Cyprichromini), Neolamprologus savoryi (Lamprologini), and Boulengerochromis710

microlepis (Boulengerochromini, placed as outgroup; Ronco et al. 2021). For this species711
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Fig. 5 Signals of introgression detected with the robust version of the new ‘ABBA’-site clustering test for datasets
simulated for 50 replicates with a population size Ne = 105, a mutation rate µ = 2 ⇥ 10�9, either no (m = 0; a,d),
weak (m = 10�8 ; b,e), or strong (m = 10�7; c,f) introgression, and either an unchanged (s = 1; a–c), or slow
(s = 0.25; d–f) rate of branch P2. All results obtained with other settings are shown in Supplementary Figures
S21–S24. Circles in black indicate significant results (p < 0.05), and only these are summarized with box plots.

quartet, the “sensitive” and “robust” versions of the ‘ABBA’-site-clustering test strongly712

supported clustering with p = 2.3⇥ 10�16 (the smallest value handled by Dsuite) and713

p = 7.8⇥ 10�9, respectively. In stark contrast, Dsuite reported a low and non-significant714

D-statistic of D = 0.01 for this quartet (with Cyprichromis pavo and Tropheus polli placed715

in positions P1 and P2, respectively, based on the number of shared alleles with P3)716

(Supplementary Table S5).717

However, repeating the analysis separately for each of the 23 linkage groups (LG) of718

the Nile tilapia reference assembly (Conte et al., 2017) revealed that the only linkage group719

for which both versions of the ‘ABBA’-site-clustering test reported significant clustering720

was LG2 (p = 2.3⇥ 10�16 for both test versions), where we also found a high and721

significant D-statistic (D = 0.285; p = 1.8⇥ 10�5). Clustering of “strong ABBA sites” was722
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Fig. 6 Clustering of ‘ABBA’ sites in empirical data for Lake Tanganyika cichlid fishes. Results are shown for the
first three linkage groups (LG) of the Nile tilapia reference assembly; results for all linkage groups are presented in
Supplementary Figures S35 and S36. With sorted “strong ABBA sites” on the horizontal axis, the black line indicates
their position within a vector of polymorphic sites on the vertical axis. A straight, diagonal line therefore illustrates
a homogeneous distribution of these sites within this vector, while changes in the gradient illustrate clustering.
significant p-values are marked in bold. The gray area indicates a region with increased frequency of “strong ABBA
sites” in the first half of LG2.

not detected on any of the other linkage groups with the “robust” version of the test;723

however, the “sensitive” test version supported clustering on 18 other linkage groups (with724

4.7⇥ 10�6 6 p 6 0.04), suggesting perhaps an e↵ect of mutation rate variation along the725

chromosomes. Plotting the positions of “strong ABBA sites” relative to all polymorphic726

sites (vector ~g of the “sensitive” test version) or relative to all “strong ABBA sites” and727

“strong BABA sites” (vector ~h of the “robust” test version) clearly illustrates the728

clustering on LG2 (Fig. 6 for LGs 1–3; Supplementary Figs. S35 and S36 for all LGs).729

Repeating this analysis for other quartets of species from the four tribes revealed that the730

pattern of strong clustering on LG2 was shared by all of them.731
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Discussion732

As genome-wide data are becoming available for more and more species across the733

tree of life, these give us the opportunity to investigate the extent of between-species734

hybridization and introgression in unprecedented detail (Taylor and Larson, 2019). These735

data have already revealed an unexpected frequency of ongoing or recent introgression, and736

are beginning to uncover their occurrence also in the deep past (MacGuigan and Near 2019737

[Percidae]; Pavón-Vázquez et al. 2021 [Varanidae]; Hodson et al. 2022 [Sciaridae,738

Cecidomyiidae]). However, the results of studies on ancient introgression must be critically739

evaluated when they are based on introgression detection methods that were originally740

developed for recently diverged species or populations (Pease and Hahn, 2015; Hibbins and741

Hahn, 2022; Zheng and Janke, 2018).742

Our results confirm a recent report that demonstrated a sensitivity of Patterson’s743

D-statistic and the related D3 (Hahn and Hibbins, 2019) and HyDe (Blischak et al., 2018)744

tests to among-species rate variation (Frankel and Ané, 2023). We extended these previous745

results to data simulated with a more diverse range of parameters, including di↵erent746

phylogeny ages, population sizes, mutation rates, and both homogeneous and variable747

recombination rates, corroborating that the D-statistic is generally sensitive to rate748

variation.749

To distinguish between false signals caused by rate variation and genuine indicators750

of introgression, we propose a test for clustering of ‘ABBA’ sites along the chromosome, a751

pattern which arises when several polymorphisms are derived from the same introgressed752

haplotype. Our analyses demonstrated that this test is robust to among-species rate753

variation, with no false positives after multiple testing correction, and few false negatives754

across a wide range of datasets. False negatives for the “sensitive” test version were limited755

mainly to cases of weak introgression in combination with an elevated substitution rate in756

P2. The “robust” test version, on the other hand, performed most reliably when757

introgression rates were intermediate, with only a minor or no influence of among-species758
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rate variation. The reason why the “robust” test version returned many false negatives with759

very strong introgression was that most of the simulated chromosomes carried introgressed760

sequences in very long continuous blocks. However, such cases of very strong introgression761

could always be identified reliably by their very high and significant D-statistic, along with762

a highly significant result of the “sensitive” version of the ‘ABBA’-site-clustering test. In763

their combination, the ‘ABBA’-site-clustering test and D-statistics thus form a powerful764

set of tools to detect introgression across a wide range of settings.765

In addition to introgression, clustering of ‘ABBA’ sites could in principle be766

expected to arise from ILS, as ILS-derived tracts can contain multiple genetic variants.767

Nevertheless, we showed here that the ‘ABBA’-site clustering test is robust to ILS. In the768

absence of introgression but presence of ILS, we did not observe any false-positives after769

multiple-testing correction. This di↵erence in sensitivity to introgression vs. ILS cannot be770

explained by the lengths of the tracts produced by these two processes, as these were771

comparable across the simulations. Instead, the explanation likely lies in the di↵erence in772

numbers of ‘ABBA’ sites within introgressed vs. ILS tracts. Haplotypes introduced773

through introgression may often have had a long time, at least ten million generations in774

our simulations, to accumulate the mutations that produce ‘ABBA’ sites following775

introgression between P3 and P2. On the other hand, haplotypes introduced through ILS776

had much less time for the accumulation of mutations that would ultimately produce777

‘ABBA’ or ‘BABA’ sites – on average, one coalescent unit (2Ne generations) – in the778

common ancestor of P1, P2, and P3. Thus, the tracts produced by ILS carry fewer ‘ABBA’779

sites than those produced by introgression, which, as a consequence, renders the780

‘ABBA’-site-clustering test robust to ILS.781

Besides introgression and ILS, mutation-rate variation along the chromosome, for782

example driven by an elevated rate in GC-rich mutation hotspots (Ségurel et al., 2014;783

Nesta et al., 2021), can also cause clustering of ‘ABBA’ sites. Both versions of the784

‘ABBA’-site-clustering test are designed to account for this variation to some degree. In785
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the “sensitive” test version, clustering of “strong ABBA sites” is considered relative to all786

polymorphic sites, while the “robust” version of the test assesses clustering relative to787

“strong BABA sites”. All of these increase in frequency along with ‘ABBA’ sites in788

mutation hotspots. However, our simulations revealed that, at least for some parameter789

combinations, the frequency of ‘ABBA’-pattern homoplasies among all polymorphic sites is790

higher in mutation-rate hotspots, leading to their clustering and some false positives for791

the “sensitive” test . However, the relative probabilities of ‘ABBA’ and ‘BABA’792

homoplasies both scale equally with the local mutation rate. This is why the version of the793

test that focuses only on these two types of sites is robust to variation in the mutation rate794

along the chromosome.795

The application of our ‘ABBA’-site-clustering test to a presumably796

introgression-free empirical dataset led to the surprise identification of a single linkage797

group – LG2 – on which not just our test produced a strong signal of introgression, but798

where this signal was also confirmed by a high and clearly significant D-statistic. For other799

linkage groups, in contrast, significant clustering was detected only with the “sensitive”800

version, but not the “robust” version of the ‘ABBA’-site-clustering test, suggesting that801

this clustering is in fact derived from mutation-rate variation and not from introgression.802

For LG2, the signal detected by our test as well as the D-statistic stemmed from a high803

frequency of ‘ABBA’ sites on the first half of the linkage group. Due to the clear804

localization of the signal to a specific region of the chromosome and its consistency across805

many di↵erent species quartets, we suspect that it may be contained within a large region806

of low (or no) recombination, possibly facilitated by a chromosomal inversion. Two807

scenarios could then explain the localized clustering of ‘ABBA’ sites: The region could808

have been transferred between species due to introgression that otherwise left little to no809

signal in the genome, or it could result from ILS. Further comparative analyses of species810

quartets could help to discriminate between these two options, and might reveal interesting811

insights into the evolution of Lake Tanganyika cichlids in a future study. Here, however, we812
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limit our conclusion for this analysis to the performance of the ‘ABBA’-site-clustering test:813

First, we conclude that the “robust” version of the test did not produce any false positives.814

And second, we note that the test is able to identify large regions, that potentially derived815

from introgression, even more clearly than the D-statistic.816

Our implementation of the ‘ABBA’-site-clustering test in the program Dsuite is817

easy to use and comes with negligible added cost to Dsuite analyses. Given that Dsuite is818

among the fastest tools available for the calculation of D-statistics (Malinsky et al., 2021),819

the additional application of the ‘ABBA’-site clustering test should be computationally820

feasible for all users.821

Our analyses of simulated datasets revealed that tree-based methods can be useful822

for the detection of introgression when rate variation is present, and identified the823

conditions under which each approach performs reliably. While we observed an e↵ect of824

long-branch attraction a↵ecting the Dtree statistic, this e↵ect was weak and only noticeable825

when all results were considered in aggregate. In fact, none of the datasets simulated826

without introgression produced a false-positive, significant Dtree statistic, even when Dtree827

itself reached the maximum value of 1.0 (Fig. 3a). On the other hand, Dtree was828

consistently large and significant even with weak introgression (m = 10�8; Fig. 3b,e,h),829

suggesting that Dtree is a powerful detector of introgression.830

Besides Dtree, SNaQ appeared to be robust to rate variation across our simulated831

datasets (Fig. 3j,p). Given that SNaQ analyzes tree topologies, however, we caution that832

the same weak bias that a↵ected Dtree might also be relevant for SNaQ. Like for Dtree, we833

thus advise that weaker signals reported by SNaQ might better be ignored. Furthermore, it834

has been pointed out that the use of AIC is inappropriate for the comparison of SNaQ835

results, due to the pseudolikelihood framework employed by SNaQ (Hibbins and Hahn,836

2022). To avoid this issue, users of SNaQ may want to focus – like we did – on sets of four837

taxa with putative introgression, in which case SNaQ calculates and reports actual838

likelihood values (Soĺıs-Lemus and Ané, 2016).839
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Finally, we found that the performance of QuIBL depended strongly on the length840

of the alignments used to generate the input tree set. Given that QuIBL produced many841

false-positive signals of introgression regardless of rate variation when the alignments were842

short (Supplementary Fig. S11), the use of longer alignments, with lengths of at least 1,000843

bp may be recommendable. With such alignments as input, QuIBL performed rather844

reliably (Supplementary Fig. S13) and detected most cases of stronger introgression.845

In practice, the inference of ancient introgression between divergent species may846

often be hampered by the requirements of detection methods. Site-pattern-based methods847

(such as the D-statistic and the ‘ABBA’-site clustering test) require SNP datasets that are848

typically obtained through read mapping towards a reference genome assembly. When849

investigating divergent taxa, however, it may no longer be possible to map all of them850

reliably to the same reference genome. As a result, SNP datasets produced for such taxa851

may be limited and prone to reference bias particularly in taxa with lower read coverage,852

which can generate misleading signals of introgression (Günther and Nettelblad, 2019). To853

minimize the chance of reference bias while also reducing the numbers of homoplasies,854

outgroup species should be chosen that are as closely related to the ingroup as possible. As855

an alternative that does not depend on a reference, multi-marker sets of alignments have856

traditionally been produced through ortholog-identification approaches focusing on genes857

or ultra-conserved elements. While these approaches may be more suited for divergent taxa858

than read mapping, they are generally limited to certain regions of the genome,859

corresponding to a set of input query sequences.860

Fortunately, two recent developments promise to overcome these limitations,861

rendering larger regions of the genome accessible for the detection of ancient introgression:862

First, methods for whole-genome alignment have finally matured to the degree that they863

can be applied to hundreds of genome assemblies of highly diverged taxa (Armstrong864

et al., 2020). By using assemblies instead of mapped reads, these whole-genome alignments865

are immune to reference bias, and allow the extraction of massive numbers of SNPs for866
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site-pattern-based methods, or of alignment blocks for tree-based methods. Second, more867

and more genome assemblies are now highly contiguous, chromosome-resolved or nearly so868

(Rhie et al., 2021; Formenti et al., 2022). This is relevant for the completeness of869

whole-genome alignments, and reduces their fragmentation. Both will contribute to the870

utility of the new ‘ABBA’-site clustering test, given that this test requires contiguous871

genomic blocks within which clustering can be observed.872

In their combination, these new developments are now allowing us to push the873

limits of reliable introgression detection, enabling the inference of introgression even among874

species that have diverged many tens of millions of years ago. We are thus coming closer to875

being able to assess the true extent of hybridization and introgression across the tree of life.876

Code Availability877

Code for all our computational analyses is available on878

https://github.com/thorekop/ABBA-Site-Clustering879
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