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Recombination is central to genetics and to evolution of sexually reproducing organisms. However, obtaining accurate estimates of re-
combination rates, and of how they vary along chromosomes, continues to be challenging. To advance our ability to estimate recom-
bination rates, we present Hi-reComb, a new method and software for estimation of recombination maps from bulk gamete
chromosome conformation capture sequencing (Hi-C). Simulations show that Hi-reComb produces robust, accurate recombination
landscapes. With empirical data from sperm of five fish species we show the advantages of this approach, including joint assessment
of recombination maps and large structural variants, map comparisons using bootstrap, and workflows with trio phasing vs. Hi-C phasing.
With off-the-shelf library construction and a straightforward rapid workflow, our approach will facilitate routine recombination landscape
estimation for a broad range of studies and model organisms in genetics and evolutionary biology. Hi -reComb is open-source and freely

available at https://github.com/millanek/Hi-reComb.
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Introduction

Meiotic recombination is a hallmark of sexual reproduction.
While mutations give rise to new genetic variants, recombination
shuffles them to generate new haplotypes—thatis, chromosomes
with novel combinations of existing alleles which selection can
act on. Therefore, recombination impacts key evolutionary pro-
cesses such as adaptation and speciation, and it shapes the distri-
bution of genetic variation along the genomes. Because
organismal traits are usually influenced by many genetic variants
(Shietal. 2016; Boyle et al. 2017; Barton 2022), often with nonlinear
epistatic interactions among them (Phillips 2008; Domingo et al.
2019; Johnson et al. 2023), and because adaptation and speciation
commonly require co-evolution of a whole suite of traits (Phillips
and Arnold 1989; White and Butlin 2021), evolution is increasingly
seen as multidimensional and combinatorial (Marques et al. 2019;
Barton 2022), with recombination in a central role. Yet, routine
and accurate genome-wide reconstruction of recombination
maps remains a major challenge, and there is a need for novel ap-
proaches and methods for recombination inference.
Recombination rates vary by several orders of magnitude along
the genome (Coop and Przeworski 2007; Stapley et al. 2017;
Halldorsson et al. 2019). Accurate inference and representation

of this variation requires ascertaining the chromosomal locations
of many crossover events. Depending on how this is done, recom-
bination rate inference methods can be divided into three cato-
gories (Pefialba and Wolf 2020): (i) indirect population genetic
approaches based on patterns of linkage disequilibrium (LD);
(ii) genetic linkage maps based on the transmission of polymorph-
ic markers in crosses and pedigrees; and (iii) gamete sequencing,
based on finding breakpoints in gamete haplotypes compared to
the donor genome. The recombination maps inferred by the three
approaches differ in several important respects, perhaps most
notably in resolution, the measured time interval, and in how
they are impacted by selection (Pefialba and Wolf 2020). For ex-
ample, LD-based maps typically integrate over thousands of gen-
erations of recombination, deliver high resolution, but are
influenced by selection and other population genetic processes af-
fecting LD (e.g. population size changes) occuring over that time-
frame. In contrast, studies using crosses and pedigrees directly
reflect crossovers passed across one or a small number of genera-
tions but rarely include the thousands of samples needed to
achieve resolution comparable to LD-based maps [but see
(Morgan et al. 2017; Halldorsson et al. 2019) for high resolution
maps in humans and mice]. Finally, approaches based on
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sequencing of sperm, eggs, or pollen reveal all crossovers that oc-
cured during successful gametogenesis, and thus deliver a direct
snapshot of the recombination process, not affected by selection
acting at other life stages. The resolution of these gamete-based
maps is largely determined by the number of gametes that can
be typed.

Single sperm whole-genome sequencing has been used for well
over a decade (Lu et al. 2012; Wang et al. 2012) and continues to
deliver insights into the factors that influence meiotic recombin-
ation (Hinch et al. 2019; Yang et al. 2022). However, practical lim-
itations have restricted studies to typing at most a few hundred
sperm cells. One exception is the Sperm-seq (Bell et al. 2020)
protocol—a sperm specific variation of high-thoughput single
cell sequencing (Macosko et al. 2015)—which scaled to over
30,000 sperm cells. Nevertheless, the adoption of this approach
beyond the original study appears to be limited, likely due to the
custom and relatively complex laboratory procedure that is re-
quired. Bulk sequencing approaches avoid the need for the isola-
tion of individual cells. Three studies introduced linked-read
sequencing of bulk sperm and pollen (Dréau et al. 2019; Sun
et al. 2019; Xu et al. 2019), demonstrating that single cell sequen-
cing of individual gametes is not necessary to infer crossover
events. These studies use read-linkage information to find recom-
bination breakpoints by comparing individually barcoded gamete
DNA fragments against the haplotypes of the donor individual.
Recently, three additional studies used long read PacBio Hi-Fi se-
quencing of bulk sperm to characterize noncrossover gene con-
version tracts (Porsborg et al. 2024; Schweiger et al. 2024;
Charmouh et al. 2025). However, at the sequencing depths used
by these studies, the long reads covered only relatively small
numbers of crossover events that are insufficient for recombin-
ation map reconstruction.

Here we present Hi-reComb, a new method and software for
estimating individual recombination maps from bulk gamete
chromosome conformation capture (Hi-C) sequencing data
(Lieberman-Aiden et al. 2009; Rao et al. 2014; Oksuz et al. 2021),
using a standard Hi-C library preparation protocol. By taking ad-
vantage of the long insert sizes delivered by Hi-C, this approach
can achieve substantially greater effective coverage by crossover-
informative read pairs than has been possible with comparable
amount of linked or long read sequencing. Moreover, Hi-C data
provide information regarding large-scale structural variation in
the donor individual, allowing for simultaneous improvements
of the reference genome and better interpretation of the genetic
map constructed from this data. First, we show the accuracy of
Hi-reComb by reconstructing genetic maps from simulated
data. Next, to demonstrate the real-world utility of this approach,
we constructed and sequenced several sperm Hi-C libraries, used
the data to scaffold two reference genomes, and then inferred and
evaluated several recombination maps for cichlid and stickleback
fish. We show that the maps correspond well to LD-based maps
and that the effects of donor haplotype phasing errors are limited.
This approach is applicable to any species/individuals that pro-
duce at least hundreds of thousands of gametes and are not
strongly inbred. Many such species exist; therefore, Hi-reComb
will be of utility to a broad range of researchers interested in gen-
etics and recombination.

Materials and methods
The Hi-reComb approach

Recombination map reconstruction using Hi-reComb starts with
preparing a standard commercially available Hi-C library. We
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Fig. 1. The principle of detecting crossovers with Hi-reComb. The donor
genome is shown with heterozygous sites separating the two haplotypes
indicated. For each sperm Hi-C read pair, if both fragments match the
same donor haplotype, this indicates an absence of crossover
(no-crossover). If the fragments match different donor haplotypes, this
indicates a crossover between them. Finally, if both fragments do not
cover haterozygous sites in the donor genome, the read pair is not
informative with regards to recombination.

choose a library based on endonuclease digestion to provide a
relatively uniform sequencing coverage (Supplementary Fig. 1).
After sequencing and alignment to a reference genome,
Hi-reComb detects meiotic crossovers by comparison of Hi-C frag-
ments against donor haplotypes (Fig. 1). Because the two reads
from each pair of Hi-C fragments originate from the same haploid
gamete, cases where the two fragments match different donor
haplotypes indicate that a crossover took place between them.
We denote this event as X = C. Conversely, if the two fragments
match the same donor haplotype, this suggests the absence of
any crossover between them, denoted X =N. The match of Hi-C
fragments to either of the two donor haplotypes is determined
by sites at which the donor is heterozygous. Therefore, if the
Hi-C fragments do not cover at least one heterozygous site each,
such a read pair is not informative with regards to crossovers.

Hi-reComb estimates crossover likelihoods for each inform-
ativeread pair i, takinginto account the base quality scores output
by the sequencer and haplotype phase quality scores output by
the phasing algorithm. Let ¢; be a parameter indicating if a cross-
overdid (¢; = 1) or did not (¢; = 0) take place between a pair of reads;
thus 0= {cc; € {0, 1}}. We then define a crossover likelihood 1; =
P(X=C|c;=1) and noncrossover likelihood I, =P(X=_C|c;=0),
which are calculated as detailed in Supplementary Note 1.
Reads with multiple SNPs are used as long as all the SNPs in
each read consistently agree on the read pair status (X=C or
X =N). Then we use the two outermost SNPs for each read pair
in the likelihood calculations and all subsequent analyses.
While the likelihoods account for base calling and phasing errors,
at least as far as they are accurately estimated by the sequencer
and the phasing algorithm, other sources of error, e.g. arising in
variant calling/filtering or from noncrossover gene conversion
events, are unaccounted for. We found that false positive cross-
over read pairs—i.e. overestimating l; and underestimating l,;—
can have substantial impact on the inferred recombination land-
scapes, creating false “spikes” of recombination. This is true espe-
cially for read pairs with short inserts; that is, short genomic
distances between the Hi-C fragments.

While false positives are equally likely across the insert length
distribution, the proportion of true positives increases linearly
with insert length: on average, there are 1,000 x more true posi-
tives for read pairs with insert size of 1 Mb compared with read
pairs with insert size of 1kb. This is because the further away
two loci are from each other along the chromosome (the greater
theinsert length), the higher the probability that a crossover really
occurred between these two loci (i.e. the greater the true positive
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rate). To estimate the overall false positive rate and to apply a cor-
rection to the likelihoods, we first use likelihoods of long-insert
read pairs (default: >1 Mb), where the ratio of true to false posi-
tives is highly favorable, to estimate r}, the average per-bp cross-
over rate for each chromosome. Then we calculate a correction
factor by evaluating the crossover likelihoods of short-insert
read pairs (default: <1 kb) against this baseline. Formally, the cor-

rection factor fis defined asf = 2:&173201“ where isums over all
ns short-insert informative read pairs with X = C and where d; is
the insert size of the read pair i. While the defaults will be suitable
in most settings, the thresholds for defining short- and long-insert
read pairs can be adjusted using the -FPrateThresholds option,
which may be useful when analyzing genomes with very small or
large chromosomes.

To calculate crossover probabilities, we incorporate the cor-
rected likelihoods together with insert length dependent priors
in a Bayesian framework. We assign priors to read pairs under
the assumption that the recombination rate is uniform along
each chromosome. Therefore, the longer the insert length d; the
higher is the prior for each informative read pair i. The prior prob-
ability of crossover p,; for each informative read pair i is then sim-
ply the product of rf and of the insert length:

Pei = Tixd;

Finally, the posterior crossover probability for each informative
read pair i where X =C is:

(Ici - f) *Pci

P = =T + T +7 W =)

For read pairs that do not indicate crossovers, we set
li=P(X=N|¢;=1)=0 and l;=P(X=Nj¢;=0)=1. This is highly
“conservative” in terms of avoiding any risk of introducing add-
itional false positives. While it results in false negatives—i.e.
underestimating l; and overestimating l,,—this approach does
not affect the shape of the estimated recombination landscapes
because these false negatives are randomly distributed along the
chromosomes.

To reconstruct the recombination map, we initially divide the
crossover probability of each Hi-C read pair uniformly alongits in-
sertlength. Thatis, we assign the same probability to all basepairs
between the informative sites that determine the crossover. Then,
we construct an initial recombination map by dividing the sum of
crossover and noncrossover probabilities at each bp of the
chromosome. While this initial map reflects crossover probabil-
ities of individual read pairs, our goal is to produce a recombin-
ation map that integrates probabilities over all read pairs. To
achieve this, Hi-reComb employs an Expectation-Maximization
(EM) procedure (Dempster et al. 1977), which is very similar to
the EM procedure employed by (Halldorsson et al. 2019). For a de-
tailed description of the initial map construction and of our EM
procedure see Supplementary Note 2.

The core algorithm is supported by several practical heuristics
that we found improve its overall performance. The first heuristic
concerns an “edge effect” whereby the effective coverage—i.e. the
number of informative read pairs that span a given genomicinter-
val—drops toward chromosome ends (Supplementary Fig. 1).
Reduced effective coverage leads to increased sampling noise,
which propagates through the EM algorithm and can affect gen-
omic regions far beyond the chromosome edges. To alleviate
this problem, we have introduced a minimum effective coverage

cutoff around chromosome edges, whereby the genomic intervals
beyond the cutoff limits are excluded from the EM procedure and
from the resulting recombination maps. Second, we eliminate im-
balanced SNP and their associated read pairs from consideration
before starting the recombination map reconstruction. This re-
duces errors arising from incorrect variant calling and/or phasing,
e.g. due to mismapping of reads. By default, a SNP is considered
imbalanced if it bounds two or more read pairs thatindicate cross-
overs (X = C), while none of the read pairs it bounds indicate an ab-
sence of a crossover (X = N). The thresholds can be adjusted using
the --imbalancedsSNps option. Finally, the third heuristic in-
volves adjusting crossover likelihoods to consider the probability
of double crossovers. In this calculation, the probability p; of
two crossovers is given by a Poisson mass function: p; = 22xe™/2,
where 2=r}. Because of crossover interference (Chuang and
Smith 2022), this adjustment is limited to for long-insert read
pairs (default >1 Mb). The length threshold will be suitable in
most settings but can be adjusted depending on the extent of
crossover interference in the species of interest (Ernst et al.
2024) by using the --minDforDoubleCrossovers option.

Implementation

The Hi-reComb package is efficiently coded in C++, does not have
any external dependencies, and is straightforward to install, com-
pile and use. It is open source and freely available from https:/
github.com/millanek/Hi-reComb. Hi-reComb currently contains
two core modules and two additional utilities. The first core mod-
ule, FindInfoPairs processes aligned Hi-C read pairs to find the
pairs that are informative with regards to crossovers (Fig. 1). It
takes as an input a set of phased heterozygous sites in the
HapCUT?2 format (Edge et al. 2017) and Hi-C read pairs in SAM/
BAM format (Danecek et al. 2021) and outputs only pairs of Hi-C
reads that cover at least one phased heterozygous site each. The
second core module, RecombMap performs recombination map in-
ference as described above, with run times of the order of minutes
for each chromosome. In addition, RecombMap provides a boot-
strap option to evaluate uncertainty, whereby informative Hi-C
read pairs are resampled with replacement to estimate additional
genetic maps. This option also allows taking an average across the
bootstraps, which tends to result in smoother maps than a single
run estimate.

The Hi-reComb package alsoincludes a tool to simulate inform-
ative Hi-C read pairs reflecting a known recombination map. This
Simulate utility enables users to evaluate the accuracy of recom-
bination map inference for a given effective coverage, error rate,
insert-size distribution, and map profile. The utility matches the
insert-size distribution of the simulated pairs to real Hi-C read
pair dataset provided as an input. Each simulated read pair is
placed randomly onto a chromosome, and its crossover status
(i.e. X =Cor X =N)is determined by the centimorgan (cM) distance
from the input recombination map with an error rate (both false
positive and false negative) determined by the --errorRate par-
ameter. Read pairs are simulated until reaching a target effective
coverage, which is specified by the -targetCoverage parameter.
The simulated reads are used to reconstruct a recombination
map as in the RecombMap module. The accuracy of map recon-
struction for the given parameters can then be evaluated by com-
parison with the input map. This procedure can be repeated
multiple times using the -replicates parameter.

Because the vast majority of read pairs do not have a crossover
between them, it is possible to use the sperm Hi-C reads to deter-
mine donor haplotype phasing, for example using HapCUT2 (Edge
et al. 2017). In this case, no other data is required. This approach
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works well in practice, in part because of the robustness of
Hi-reComb to errors, including phasing errors, as we demonstrate
in the Results section below. However, more accurate phasing can
be obtained, for example with Hi-C data from a somatic tissue or
by using mother-father-offspring trio data. For the latter purpose
Hi-reComb provides the TrioPhase utility, which takes as inputa
VCF file specifying heterozygous sites in the donor and another
VCF file with his parents who have been genotyped at the same
loci. The TrioPhase utility outputs phased haplotypes in the
same format used by the core modules of Hi-reComb.

Sperm Hi-C data

We obtained sperm Hi-C data from one individual each of cichlid
fish species Aulonocara stuartgranti and Astatotilapia calliptera
(from Lake Malawi), Neolamprologus multifasciatus (from Lake
Tanganyika), Astatotilapia nubila (from the swamps of Lake
Victoria), and threespine stickleback Gasterosteus aculeatus (from
Walby Lake in Alaska), all obtained from laboratory aquarium
stocks. A single sexually mature male was sacrificed from each
species and his freshly harvested testes were flash-frozen in liquid
nitrogen. Upon thawing at room temperature, we cut open the tes-
tes and suspended the sperm in ~100 pl of TE buffer. Sperm cells
were counted with hemocytometer, aiming for between 100k
and 1 million cells. This was then used as input into the standard
Dovetail Omni-C library preparation, following the standard
protocol. All libraries were sequenced on the Illumina Novaseq
6000 instrument, obtaining paired end 2 x 150 bp reads.

Reference genomes and Hi-C scaffolding

We first used to Hi-C reads from A. calliptera and from N. multifas-
ciatus to produce accurate reference genome assemblies with
chromosome-scale scaffolds. For A. calliptera, we used as a starting
point the fAstCall.2 genome (GenBank: GCA_900246225.3). This
genome assembly was already chromosome-scale, with scaffold-
ing using 10x Genomics Chromium linked reads, BioNano Irys
optical maps and two low-resolution genetic maps (Quin et al.
2013; Albertson et al. 2014). However, we found about a
hundred disagreements between that assembly and the Hi-C
contact map. These discrepancies were corrected manually
using the PretextView software (https:/github.com/sanger-tol/
PretextView). The new manually curated genome was used as a
reference for recombination analyses and was deposited as
fAstCall.5 under GenBank accession GCA_900246225.6. For N.
multifasciatus, we used as a starting point the fNeoMull.1 genome
(GCA_963576455.1), which was not chromosome-scale but was
fragmented in 378 large contigs. To produce chromosome-scale
scaffolds for this species, we used the YaHS Hi-C scaffolding tool
with default parameters (Zhou et al. 2022). The new scaffolded
genome fNeoMul1.2 (GCA_963576455.2) was then used for recom-
bination analyses. Finally, for G. aculeatus we used the stickleback
v5 reference under GCA_016920845.1.

Alignment and Hi-C contact maps

Hi-Creads were mapped to the reference genomes using bwa mem v
0.7.17 (Li 2013) with the -5sP and -T0 options. To generate Hi-C
contact maps, we used the pairtools (Open2C et al. 2024) soft-
ware (v. 1.1.0), using the --min-mapg 30, --walks-policy
Sunique, --max-inter-align-gap 30, and --chroms-path op-
tions for the parse command, and using the dedup command
with default parameters. The “pairs” files were then used as input
into the juicer tools (v 1.22.01) pre command from the
Juicebox package (Durand et al. 2016) which was also used for con-
tact map visualization.

Variant calling, filtering, phasing

To remove duplicates for all purposes other than the Hi-C
contact maps above, we used the MarkDuplicates command
from the picard package (v 2.26.6) with the option
REMOVE DUPLICATES=true. Variant calling was done separately
for each individual with beftools v.1.16 (Danecek et al. 2021) using
mpileup ——count-orphans -Ou output piped into the call pro-
gram with -mv -0z options. For variant filtering we used a mapp-
ability mask, whereby we broke down the genome into
overlapping k-mers of 150 bp (matching the read length), mapped
these k-mers back to the genome, and masked all sites where few-
er than 90% of k-mers mapped back to their original location per-
fectly and uniquely, using the SNPable tool (http:/lh3lh3.users.
sourceforge.net/snpable.shtml). Next, we filtered variants based
on sequencing depth, with limits based on examining the cover-
age histogram for each sample: removing variants with depth
<12 and > 75 for A. calliptera, < 35 and > 140 for A. stuartgranti,
<20 and > 120 for N. multifasciatus, < 35 and > 120 for A. nubila,
and < 8 and > 100 for G. aculeatus. Finally, we applied the following
hard filters, removing variants where any of these applied: $QUAL
<20, MQ<40, MQOF > 0.4, RPBZ<—5.0,0r RPBZ > 5. 0. After vari-
ant filtering, we kept only biallelic SNPs with heterozygous geno-
types. To estimate the allelic phase of these SNPs, we used
hapcut2 (v 1.3.4). After dividing the VCF files and the alignment
bam files per chromosome, for each chromosome we ran first
the extractHAIRS and then the hapcut2 commands, both with
the -—hic 1 option.

Stickleback trio-based phasing—data and
processing

The G. aculeatus sperm donor individual originated from an aquar-
ium F1 cross from wild-caught parents. We sequenced the DNA of
his parents to triophase the heterozygous SNPs in this individual
using Mendelian inheritance logic (trio phasing). The sequencing
was done on the Illumina Novaseq 6000 instrument with 2 x
150 bp reads as a part of a larger DNA sequencing of 24 indivi-
duals, each at approximately 25 x coverage. For processing this
dataset we used alignment with bwa mem v 0.7.17 (Li 2013) with de-
fault options, followed by the MarkDuplicates command from
the picard package (v 2.26.6) with default options. Then we
used GATK v 4.2.3 (DePristo et al. 2011) to call variants, using
HaplotypeCaller in GVCF mode for each individual separately
followed by joint genotyping using GenotypeGVCFs with the —
include-non-variant-sites option. For variant filtering, we
generated a callability mask to identify and filter out regions
where we were unable to confidently call variants. This included:
(i) sites determined by overall read depth cutoffs based on exam-
ining a depth histogram (< 300 and > 700 on autosomes; < 200 and
> 600 on the X chromosome), (ii) sites where >6 individuals had
missing genotypes, (iii) sites identified by GATK as low quality
(with the LowQual tag) and (iv) sites with poor mappability. The
mappability mask was determined in the same way as for the
Hi-C analyses above: we broke down the genome into overlapping
k-mers of 150bp (matching the read length), mapped these
k-mers back to the genome, and masked all sites where fewer
than 90% of k-mers mapped back to their original location perfect-
ly and uniquely. Finally, we used several hard filters based on
GATK best practices, specifically focusing on overall genotype
quality (QUAL < 20), mapping quality (MQ < 40), mapping strand
bias (Fs > 40), variant quality normalized by depth (D < 2) and ex-
cess heterozygosity when compared with Hardy-Weinberg equi-
librium (ExcessHet > 40).
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Table 1. Sperm Hi-C data overview.

Species Raw coverage Cis >1 kb reads pairs (millions) Heterozygous sites per kb Effective coverage (chr 1)
A. calliptera 92x 18.7 1.16 292x
A. nubila 140x 48.2 1.55 3,587%
A. stuartgranti 185x 60.1 0.94 1,253x
G. aculeatus 270% 2.6 2.61 655%
N. multifasciatus 165x% 40.4 1.55 1,369x%

Stickleback trio-based phasing—Hi-reComb trio
phasing module

We used the utility TrioPhase from Hi-reComb to estimate the
haplotype phase of the G. aculeatus sperm donor individual using
mother-father-offspring trio genotype calls and simple
Mendelian logic. For each heterozygous SNP in the offspring, the
utility first checks that both alleles are present in the parents at
the same site. If both parents are heterozygous then the SNP can-
not be phased because the parental genotypes are not inform-
ative. In all other cases, the allele inherited from the first parent
is added to haplotype 1 and the allele inherited from the second
parentis added to haplotype 2. The phased haplotypes are output
as a single block in the hapcut2 format.

Stickleback LD-based map

We used a dataset of 334 Alaskan stickleback individuals se-
quenced to mean 19.6 x coverage (min: 13.4x; max: 25.8x) on
the Ilumina Novaseq 6000 instrument with 2x 150 bp reads.
Alignment, variant calling, and variant filtering was done in the
same way as for the trio-based phasing dataset (see above), except
that the overall depth filter was set at <4, 000 and > 8, 000 on
autosomes; < 3, 000 and > 7, 000 on the X chromosome and the
maximum number of missing genotypes to 66 (i.e. <20%
missingness).

This dataset included 23 individuals from Walby Lake, the
same population as the sperm donor. To estimate changes in ef-
fective population size (N.) through time, we used smc++
v.1.15.4 (Terhorst et al. 2017), with the commands: vcf2smc — es-
timate. Then we used the pyrho (Spence and Song 2019) software
to infer recombination rates along the genome based on patterns
of LD. To build likelihood tables for pairs of biallelic sites, we used
the make table command with demographic history as inferred
by smc++, and the Moran approximation specified by the ——
approx and -moran_pop_size N flags where N equals 1.5x the
number of haplotypes. This was followed by the pyrho
optimize command to infer the recombination maps with a win-
dow size of 50 SNPs and block penalty of 15.

Results

Sperm Hi-C datasets, contact maps,
and genome scaffolding

Key characteristics of the sperm Hi-C datasets presented in this
manuscript are summarized in Table 1. A statistic that has a cru-
cial effect on recombination inference is the effective coverage.
Effective coverage reflects the total length of DNA segments that
can be assessed for presence of crossovers and is determined
not only by the depth and quality (e.g. the insert-size distribution,
the proportion of PCR duplicates) of the Hi-C library but is also
substantially influenced by the heterozygosity of the donor indi-
vidual. The greater the heterozygosity, the greater is the chance
that each of the two fragments of a Hi-C read pair covers a hetero-
zygous site and thus is informative, as illustrated in Fig. 1. This

effectis clearly seen in the G. aculeatus dataset, where the Hi-C li-
brary was of relatively low quality and contained only ~2.6 million
read pairs mapping to the same chromosome with >1 kb insert, an
order of magnitude lower than all the other samples, likely due to
the much lower amount of sperm cells used as a starting material.
Despite this, the effective coverage for G. aculeatus is comparable
to the other datasets.

The use of the Hi-C data for scaffolding of the N. multifasciatus
genome resulted in 863.6 Mb (98.2%) of sequence being assigned to
22 chromosomes, while the remaining 67 unplaced scaffolds com-
prise 16 Mb of sequence. The N. multifasciatus Hi-C contact map
mapped to this new fNeoMull.2 assembly (GCA_963576455.2) is
shown in Supplementary Fig. 2. The use of the Hi-C data for scaffold-
ing of the A. calliptera genome resulted in 863.0 Mb (98.3%) of se-
quence being assigned to 22 chromosomes, while the remaining
122 unplaced scaffolds comprise 14.7 Mb of sequence. The A. callip-
tera Hi-C contact map mapped to this new fAstCall.5 assembly
(GCA_900246225.6) is shown in Supplementary Fig. 3a and examples
of how disagreements between the Hi-C contact map and the previ-
ous version of the assembly were resolved are shown in
Supplementary Fig. 3b. For A. calliptera, the chromosome count is
as expected, based on known karyotypes of Lake Malawi cichlids
(Poletto et al. 2010; Conte et al. 2019), and matches the previous as-
sembly. On the other hand, karyotypes of other species of the cichlid
tribe Lamprologini, to which N. multifasciatus belongs, showed only
21 chromosomes (Ozouf-Costaz et al. 2017); therefore, our results re-
veal previously unknown chromosome number polymorphism in
this tribe.

Hi-C contact maps provide information regarding large-scale
structural variation present in the donor individual. Perhaps the
most prominent of these is an inversion in A. stuartgranti with re-
spect to the A. calliptera reference, located in the middle of
chromosome 2 (~12.7 Mb-16.7 Mb), corresponding to the “small”
inversion previously reported by (Blumer et al. 2025). Notably,
we found that this inversion is surrounded by an extended region
of very low recombination in A. stuartgranti (Supplementary Fig.
4), illustrating how sperm-based Hi-C contact maps and recom-
bination maps can be used together to better understand the
interaction between structural variation and recombination.

Hi-reComb recombination inference
from simulations

To evaluate the accuracy of recombination map inference with
Hi-reComb, we used the Simulate utility and explored how the
performance is influenced by key parameters: the error rate and
the effective coverage. For each run, we supplied the Hi-reComb
Simulate utility with a reference map, simulated 10 replicate
Hi-C datasets from this map, and then ran recombination map in-
ference for each replicate.

Figure 2a shows an example of 10 replicate maps reconstructed
from simulations with 1% error rate and 3,000 x effective cover-
age, with chr 2 of A. stuartgranti as a reference map. With these
parameters, the reconstructed maps showed correlation with
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Fig. 2. Hi-reComb recombination map inference from simulated data. a) A comparison of a reference map against 10 maps reconstructed by Hi-reComb
from simulated data at 3,000 x effective coverage and 1% error rate. b) The dependence of accuracy of recombination map reconstruction on the effective
coverage. c) The dependence of accuracy of recombination map reconstruction on the error rate. d) The accuracy of the estimates of error rate, i.e. the

correction factor f, by Hi-reComb.

the truth of between 0.75 and 0.97 (orange line in Fig. 2b), depend-
ing on the resolution at which we measured the correlations. In
subsequent runs, we varied the effective coverage between
500 x and 3,000x, matching approximately the range of coverage
found in our empirical datasets (Table 1), while keeping the error
rate at 1%. The results, shown in Fig. 2b, revealed that decreasing
the effective coverage reduces the accuracy of inferred maps, as
expected. However, even at the relatively low effective coverage
of 500x, the reconstructed maps show substantial positive correl-
ation with the truth—on average 0.53 at 2 kb scale and 0.90 at
5 Mb scale.

Next, we explored the impact of the error rate on recombin-
ation map inference. We fixed the coverage at 1,000 x and varied
the errorrate from 0.5% to 5%. We found that at the high errorrate
of 5%, Hi-reComb still infers maps with highly positive correlation
with the truth (0.54 at 2 kb; 0.92 at 5 Mb), which is only a fraction
lower than at the 0.5% error rate where the correlations are 0.63 at
2kb and 0.93 at 5 Mb scale (Fig. 2c). The resilience to a relatively
high degree of error is partly due to the ability of Hi -reComb to ac-
curately infer the error rate from the data: at 1,000 x effective
coverage, all inference runs reported error rate estimates within
a very narrow range of the truth (Fig. 2d).

While the reconstructed recombination landscapes correlate
well with the reference map, we note that the recombination
rate tends to be overestimated in regions of low recombination
as can be seen in Fig. 2a in the extended region in the middle of
the chromosome. This overestimation of crossover probabilities
has an impact the accuracy of inference of the chromosome-wide
average rate: we found that the mean per-bp recombination rate
(mean 1) for the reference map was overestimated by between
8.5% and 14%, with higher effective coverage resulting in more ac-
curate estimates (Supplementary Fig. 5).

Empirical recombination maps

We used Hi-reComb to infer genetic maps for the five datasets de-
scribed in Table 1. Error rates estimated from these empirical data-
sets were within the range where simulations demonstrated reliable
performance, with means between 0.8% and 1.9% in cichlids and
0.6% in stickleback (Fig. 3a). The highest error rates of over 4%
were found in cichlids on chromosome 3, which contains by far
the most highly repetitive sequence where variant calling is difficult
(Supplementary Fig. 6). This, along with the lower error rate found in
sticklebacks, which have a genome with a much lower proportion of
repetitive elements than cichlids (Supplementary Fig. 6), shows the
extent to which error rates are affected by miscalled SNPs in repeti-
tive regions of the genome. Among the cichlids, we see a link be-
tween error rates and effective coverage, with the low-coverage
A. calliptera having the highest error rate, followed by the medium
coverage A. stuartgranti and N. multifasciatus, and the lowest error
rate among cichlids is in the high-coverage A. nubila.

The inferred cichlid recombination maps varied in length from
1,015 centimorgan (cM) for A. calliptera to 2,660 cM for A. stuart-
granti, which falls both below and above two previously published
sex averaged pedigree-based maps for Lake Malawi cichlids that
had lengths of 1,453 cM (Albertson et al. 2014) and 1,935 cM
(Quin et al. 2013). For stickleback, the inferred map had a length
of 1,758 cM which is somewhat above the 1,184 cM previously re-
ported for a sex averaged (Roesti et al. 2013) and 1,206 cM for a
male specific (Kivioja and Rastas 2024) pedigree-based maps
(Fig. 3b). Mean recombination rates can differ substantially be-
tween males and females (a phenomenon known as heterochias-
my) (Sardell and Kirkpatrick 2019), the extent of which has
recently been quantified for 40 fish taxa, showing that the magni-
tude and direction of the male vs. female differences vary sub-
stantially across species (Kivioja and Rastas 2024).
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We note that the absolute map lengths from Hi-reComb should
be interpreted with caution for atleast two reasons. First, differing
levels of somatic cell “contamination” across samples would af-
fect the overall rate comparisons. While we tried to separate
sperm from the surrounding tissues, examination under the
microscope showed that our biological samples contained a small
number of somatic cells, and we did not conduct further cell puri-
fication or sorting. Second, the edge effect, whereby effective
coverage decreases toward the ends of each chromosome (see
Methods), results in the map ending before the physical chromo-
some end can have different impact across individuals. Sparse
sampling of crossovers near chromosome ends also affects
pedigree-based maps (Pefialba and Wolf 2020). The extent of the
effect on absolute map lengths depends primarily on the amount
of recombination concentrated in subtelomeric regions of chro-
mosomes. Our results for individual chromosomes indicate that
such underestimation may be substantial especially for the
low-coverage A. calliptera individual and for some stickleback
chromosomes where the maps have genetic lengths <50 cM (cor-
responding to one recombination event per chromosome)
(Supplementary Fig. 7a). Examination of individual chromosomes
also revealed an interesting case where a low recombination rate
on N. multifaciatus chr 7 could be explained by incompatibilities
between divergent admixture-related haplotypes (Supplementary
Fig. 7a and b).

Itis known thatin many species, there is a negative association
between the chromosome length (in Mb) and the mean r (Haenel
et al. 2018; Brazier and Glémin 2022). Consistent with these previ-
ous studies, our results also indicate a strong negative correlation
in both cichlids and in stickleback. In cichlids (Fig. 3c), the nega-
tive link was very clear across all chromosomes for A. stuartgranti
(r?=0.55; p=7.9%x107°), A. nubila (? =0.59; p=3.1x107°), and
N. multifasciatus (> = 0.64; p=7.1x107%). In A. calliptera, the two
large chromosomes (chr 3 and chr 7) were outliers and the nega-
tive association between chromosome length and the mean re-
combination rate was present only if these two chromosomes
were excluded (complete dataset: 1 =0.02; p = 0.53; outliers ex-
cluded: r? =0.20; p=0.049). In stickleback, the negative associ-
ation between the chromosome length and mean r was very
strong in maps based on the trio phasing, which will be described
below (r? = 0.71; p = 3.0 x 107%; Supplementary Fig. 8).

To estimate uncertainty in reconstructed recombination land-
scapes, Hi-reComb RecombMap includes a bootstrap procedure
whereby informative read pairs are resampled with replacement.
As an example, Fig. 4a shows a recombination landscape for chr 4
of A. stuartgranti with 95% confidence intervals (95% CIs) esti-
mated based on 50 bootstrap replicate runs. Importantly, the
bootstrap estimates facilitate comparisons among recombination
landscapes. We define the areas where 95% CIs of two maps do not
intersect as areas of significant recombination rate differences, or
A(r) regions. Toillustrate this functionality, Fig. 4b shows compar-
isons between the maps of A. stuartgranti and A. nubila. Overall, we
found that A(r) regions between these two species comprised
62.3 Mb of sequence, or 7.23% of the genome, with variation
across chromosomes between 3.1 and 14.7%. To account for the
fact that mean rates differ between the two maps, we also normal-
ized the means before calculating the A(r) regions. On these mean-
normalized maps, A(r) regions comprised 45.7 Mb of sequence, or
5.30% of the genome, with variation across chromosomes be-
tween 2.8% and 11.0%.

Comparisons with trio phasing and with
LD-based maps

Our standard workflow uses the same Hi-C dataset for both haplo-
type phasing and for recombination map inference (see Methods).
To compare this approach with independent trio-based phasing,
we took advantage of the fact that the G. aculeatus donor individual
was bred in an aquarium from known parents. We obtained short
read whole-genome data from the parents and, after variant calling
and filtering, we used Hi-reComb TrioPhase to obtain haplotype
phase information for ~840 thousand SNPs across the 20 stickleback
autosomes. We found that this approach reduced the crossover
(false positive/negative) error rate estimated by Hi-reComb by
more than a third, down to below 0.4% for the G. aculeatus data
(Fig. 5a). This result suggests that about a third of the errors in the
hapcut2-phased datasets arose due to incorrect phasing.

To evaluate the accuracy of the recombination maps inferred by
Hi-reComb from the hapcut2 and trio-phased datasets, we com-
pared both against a recombination map obtained for the same
stickleback population (Walby Lake, Alaska) using LD patterns in
an independent population genetic dataset (see Methods). The
LD-based map does not represent the ground truth, e.g. due to
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averaging across sexes and through time inherent in LD-based
methods. However, we can nevertheless draw tentative conclusions
from the map correlations, assuming that incorrect phasing in-
creases noise and this would result in a decreased correlation
against the LD-based map. As expected, given its lower error rate,
the trio-phased dataset delivers better correlations with the
LD-based dataset at resolutions >1 Mb (Fig. 5b). However, surprising-
ly, the pattern changes at finer resolutions (2 to 500 kb), where the
hapcut2-phased dataset seems to deliver a more accurate recom-
bination map. The better correlations at fine resolution are likely ex-
plained by the fact that hapcut2-based phasing, although less
accurate, delivers a greater density of phased heterozygous sites
along the genome and thus more fine-scale information (Fig. 5¢).

Discussion

Mapping the distribution of meiotic recombination along chromo-
somes is a crucial step in many genomic analyses. The Hi-reComb

software provides a new, straightforward, and cost-effective ap-
proach for inferring recombination maps, based on sequencing
of a Hi-C library from gametes from a single individual. In this
manuscript we show results based on fish sperm, but the method
will be applicable to a broad range sexually reproducing species.
Nevertheless, at least two factors can limit the applicability of
Hi-reComb. First, it is necessary to obtain a relatively large num-
ber of gametes from a single individual, in the range between 100
thousand and 1 million for the Hi-C protocol we used. While thisis
easily achievable for males of many larger species (e.g. most ver-
tebrates), the cell count requirement will be challenging to fulfil
for males of smaller species and almost always for females who
rarely produce such large numbers of gametes. Second, itis neces-
sary that the donor individual has sufficient heterozygosity. We
have demonstrated that heterozygosity of ~1 SNP per thousand
basepairs is sufficient (Table 1), a value that is toward the lower
end of nucleotide diversity range across sexually reproducing spe-
cies (Leffler et al. 2012; Romiguier et al. 2014). Therefore, individuals
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from most natural populations will be sufficiently heterozygous.
However, the heterozygosity requirement will pose a limitation
for obtaining recombination maps from individuals who are inbred
in nature or due to human manipulation.

Hi-reComb is well suited for comparisons of recombination
among individuals of the same or closely related species, facili-
tated by the bootstrapping option as illustrated in Fig. 4. It will
be interesting to learn more about how much variation there is
across individuals, where current knowledge of recombination
landscape variation is limited (Johnston et al. 2016; Peflalba and
Wolf 2020), with studies mostly focusing on genome-wide cross-
over counts (Payseur 2024). An important aspect of inter-
individual variation in recombination is the difference between
sexes, which is known to be considerable, at least in some species
(Sardell and Kirkpatrick 2019; Kivioja and Rastas 2024). In this
context, it should be noted that the Hi-reComb approach is lim-
ited to diploid sequences and, therefore, we were not able to ob-
tain the X or Y chromosome maps for G. aculeatus in which there
are large regions of hemizygosity due to degeneration on the Y
chromosome (Peichel et al. 2020).

We used a straightforward protocol to illustrate the potential of
Hi-reComb for routine recombination map inference. At the same
time, itis possible to envisage several improvements to the protocol.
For example, cell sorting or purification prior to library preparation
that ensures that only gametes are used would deliver recombin-
ation rate quantification that is more accurate and comparable
across individuals. It could also be beneficial to take into account
that chromatin in gametes can be distinct from somatic cells, espe-
cially in sperm where chromatin is highly condensed by protamines
(Okada 2022) or by specific histone proteins in flowering plants
(Buttress et al. 2022). Chromatin decompaction treatment of sperm
cells could deliver an even more uniform coverage and a higher
quality of the Hi-C library (e.g. fewer duplicates, larger insert sizes).

We envisage that Hi-reComb will contribute to our under-
standing of patterns and of the ultimate causes of recombination
rate variation by substantially easing the production of gamete-
based recombination maps. Given the strengths and weaknesses
of this approach, we also see great potential in combining
Hi-reComb maps with pedigree- and LD-based maps. Measuring
recombination in gametes while assessing which haplotypes are
transmitted across generations will shed light on the multifaceted
interaction between recombination and selection.

Data availability

The simulated maps and the reconstructed empirical recombination
maps are available through DataDryad at https:/doi.org/10.5061/
dryad.4f4qrfjns. The code used to analyze the recombination maps
and generate the results presented in this paper is on GitHub at
https://github.com/millanek/Hi-reComb_paper_analyses. All raw se-
quence data are available on NCBI under the following accessions:
BioProject PRJNA1133007 (sperm Hi-C of cichlids), BioProject
PRJNA1192732 (stickleback sperm Hi-C and whole-genome sequences
of parents for trio-based phasing), BioProject PRJEB49185 (stickleback
population genetic data). The Hi-C scaffolded cichlid genomes are
available under GCA_900246225.6 for A. calliptera (avalilable through
ENA at https:/www.ebi.ac.uk/ena/browser/view/GCA_900246225.6)
and GCA_963576455.2 for N. multifasciatus.
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Supplemental material available at GENETICS online.
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